statsmodels.regression.RegressionModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-statsmodels Show documentation
Show all versions of pmml-statsmodels Show documentation
JPMML StatsModels to PMML converter
The newest version!
/*
* Copyright (c) 2019 Villu Ruusmann
*
* This file is part of JPMML-StatsModels
*
* JPMML-StatsModels is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-StatsModels is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-StatsModels. If not, see .
*/
package statsmodels.regression;
import java.util.ArrayList;
import java.util.List;
import org.jpmml.converter.Feature;
import org.jpmml.converter.Label;
import org.jpmml.converter.ModelEncoder;
import org.jpmml.converter.Schema;
import statsmodels.Model;
abstract
public class RegressionModel extends Model {
public RegressionModel(String module, String name){
super(module, name);
}
abstract
public org.dmg.pmml.Model encodeModel(List extends Number> coefficients, Number intercept, Schema schema);
@Override
public org.dmg.pmml.Model encodeModel(List extends Number> params, Schema schema){
Integer kConstant = getKConstant();
ModelEncoder encoder = schema.getEncoder();
Label label = schema.getLabel();
List extends Feature> features = schema.getFeatures();
List coefficients = new ArrayList<>(params);
Number intercept = null;
// XXX
int kIndex = 0;
if(kConstant == 0){
// Ignored
} else
if(kConstant == 1){
intercept = coefficients.remove(kIndex);
features = dropInterceptFeature(features, kIndex);
schema = new Schema(encoder, label, features);
} else
{
throw new IllegalArgumentException();
}
return encodeModel(coefficients, intercept, schema);
}
}