
org.jpmml.xgboost.Classification Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml-xgboost Show documentation
Show all versions of pmml-xgboost Show documentation
JPMML XGBoost to PMML converter
The newest version!
/*
* Copyright (c) 2016 Villu Ruusmann
*
* This file is part of JPMML-XGBoost
*
* JPMML-XGBoost is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-XGBoost is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-XGBoost. If not, see .
*/
package org.jpmml.xgboost;
import java.util.List;
import org.dmg.pmml.DataField;
import org.dmg.pmml.DataType;
import org.dmg.pmml.Model;
import org.dmg.pmml.OpType;
import org.dmg.pmml.Output;
import org.dmg.pmml.OutputField;
import org.dmg.pmml.ResultFeature;
import org.dmg.pmml.mining.MiningModel;
import org.jpmml.converter.CategoricalLabel;
import org.jpmml.converter.FieldNameUtil;
import org.jpmml.converter.FieldNames;
import org.jpmml.converter.Label;
import org.jpmml.converter.LabelUtil;
import org.jpmml.converter.ModelEncoder;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.Schema;
import org.jpmml.converter.mining.MiningModelUtil;
abstract
public class Classification extends ObjFunction {
private int num_class;
public Classification(String name, int num_class){
super(name);
this.num_class = num_class;
}
@Override
public Label encodeLabel(String targetName, List> targetCategories, ModelEncoder encoder){
DataField dataField;
if(targetCategories == null){
targetCategories = LabelUtil.createTargetCategories(this.num_class);
dataField = encoder.createDataField(targetName, OpType.CATEGORICAL, DataType.INTEGER, targetCategories);
} else
{
if(targetCategories.size() != this.num_class){
throw new IllegalArgumentException("Expected " + this.num_class + " target categories, got " + targetCategories.size() + " target categories");
}
dataField = encoder.createDataField(targetName, OpType.CATEGORICAL, DataType.STRING, targetCategories);
}
return new CategoricalLabel(dataField);
}
@Override
public MiningModel encodeModel(int targetIndex, List trees, List weights, float base_score, Integer ntreeLimit, Schema schema){
MiningModel miningModel = encodeModel(trees, weights, base_score, ntreeLimit, schema);
if(targetIndex != -1){
Model finalModel = MiningModelUtil.getFinalModel(miningModel);
Output output = finalModel.getOutput();
if(output == null || !output.hasOutputFields()){
throw new IllegalArgumentException();
}
List outputFields = output.getOutputFields();
outputFields.removeIf((outputField) -> {
return (outputField.getResultFeature() == ResultFeature.PROBABILITY);
});
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
List> values = categoricalLabel.getValues();
values.stream()
.map(value -> {
return ModelUtil.createProbabilityField(FieldNameUtil.create(FieldNames.PROBABILITY, categoricalLabel.getName(), value), DataType.FLOAT, value);
})
.forEach(outputFields::add);
}
return miningModel;
}
public int num_class(){
return this.num_class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy