
org.jppf.load.balancer.impl.AbstractRLBundler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jppf-common Show documentation
Show all versions of jppf-common Show documentation
JPPF, the open source grid computing solution
/*
* JPPF.
* Copyright (C) 2005-2015 JPPF Team.
* http://www.jppf.org
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.jppf.load.balancer.impl;
import org.jppf.load.balancer.*;
import org.jppf.utils.LoggingUtils;
import org.slf4j.*;
/**
* Bundler based on a reinforcement learning algorithm.
* @author Laurent Cohen
* @exclude
*/
public abstract class AbstractRLBundler extends AbstractAdaptiveBundler {
/**
* Logger for this class.
*/
private static Logger log = LoggerFactory.getLogger(AbstractRLBundler.class);
/**
* Determines whether debugging level is set for logging.
*/
private static boolean debugEnabled = LoggingUtils.isDebugEnabled(log);
/**
* The incrementation step of the action.
*/
private static final int STEP = 1;
/**
* Action to take.
*/
protected int action = STEP;
/**
* Bounded memory of the past performance updates.
*/
protected BundleDataHolder dataHolder = null;
/**
* The previous bundle size.
*/
protected int prevBundleSize = 1;
/**
* Creates a new instance with the specified parameters profile.
* @param profile the parameters of the algorithm grouped as a performance analysis profile.
*/
public AbstractRLBundler(final LoadBalancingProfile profile) {
super(profile);
if (debugEnabled) log.debug(String.format("Bundler #%d: using RL algorithm, initial size=%d, performanceVariationThreshold=%f",
bundlerNumber, bundleSize, ((RLProfile) profile).getPerformanceVariationThreshold()));
this.dataHolder = new BundleDataHolder(((RLProfile) profile).getPerformanceCacheSize());
this.action = ((RLProfile) profile).getMaxActionRange();
}
/**
* set the current size of bundle.
* @param bundleSize the bundle size as an int value.
*/
public void setBundleSize(final int bundleSize) {
this.bundleSize = bundleSize;
}
/**
* This method computes the bundle size based on the new state of the server.
* @param size the number of tasks executed.
* @param totalTime the time in nanoseconds it took to execute the tasks.
*/
@Override
public void feedback(final int size, final double totalTime) {
if (size <= 0) return;
BundlePerformanceSample sample = new BundlePerformanceSample(totalTime / size, size);
dataHolder.addSample(sample);
computeBundleSize();
}
/**
* Compute the new bundle size.
*/
protected void computeBundleSize() {
double d = dataHolder.getPreviousMean() - dataHolder.getMean();
double threshold = ((RLProfile) profile).getPerformanceVariationThreshold() * dataHolder.getPreviousMean();
prevBundleSize = bundleSize;
if (action == 0) action = (int) -Math.signum(d);
if ((d < -threshold) || (d > threshold)) action = (int) Math.signum(action) * (int) Math.round(d / threshold);
else action = 0;
if (debugEnabled) log.debug("bundler #" + getBundlerNumber() + ": d = " + d + ", threshold = " + threshold + ", action = " + action);
int maxActionRange = ((RLProfile) profile).getMaxActionRange();
if (action > maxActionRange) action = maxActionRange;
else if (action < -maxActionRange) action = -maxActionRange;
bundleSize += action;
//int max = Math.max(1, maxSize());
int max = maxSize();
if (bundleSize > max) bundleSize = max;
if (bundleSize <= 0) bundleSize = 1;
}
@Override
public void setup() {
}
@Override
public void dispose() {
super.dispose();
dataHolder = null;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy