All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.nio.ShortBuffer Maven / Gradle / Ivy

The newest version!
/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package java.nio;

import elemental2.core.ArrayBufferView;
import elemental2.core.Int16Array;

/** A buffer of shorts.
 * 

A short buffer can be created in either of the following ways:

*
    *
  • {@link #allocate(int) Allocate} a new short array and create a buffer based on it;
  • *
  • {@link #wrap(short[]) Wrap} an existing short array to create a new buffer;
  • *
  • Use {@link java.nio.ByteBuffer#asShortBuffer() ByteBuffer.asShortBuffer} to create a short * buffer based on a byte buffer.
  • *
*/ public final class ShortBuffer extends Buffer implements Comparable, org.gwtproject.nio.HasArrayBufferView { private final ByteBuffer byteBuffer; private final Int16Array shortArray; static ShortBuffer wrap (ByteBuffer byteBuffer) { return new ShortBuffer(byteBuffer.slice()); } /** Creates a short buffer based on a newly allocated short array. * * @param capacity the capacity of the new buffer. * @return the created short buffer. * @throws IllegalArgumentException if {@code capacity} is less than zero. */ public static ShortBuffer allocate (int capacity) { if (capacity < 0) { throw new IllegalArgumentException(); } ByteBuffer bb = ByteBuffer.allocateDirect(capacity * 2); bb.order(ByteOrder.nativeOrder()); return bb.asShortBuffer(); } ShortBuffer(ByteBuffer byteBuffer) { super((byteBuffer.capacity() >> 1)); this.byteBuffer = byteBuffer; this.byteBuffer.clear(); this.shortArray = new Int16Array( byteBuffer.byteArray.buffer, byteBuffer.byteArray.byteOffset, capacity); } /** Compacts this short buffer. *

The remaining shorts will be moved to the head of the buffer, starting from position * zero. Then the position is set to {@code remaining()}; the limit is set to capacity; the * mark is cleared.

* * @return this buffer. * @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer. */ public ShortBuffer compact () { byteBuffer.limit(limit << 1); byteBuffer.position(position << 1); byteBuffer.compact(); byteBuffer.clear(); position = limit - position; limit = capacity; mark = UNSET_MARK; return this; } /** Compare the remaining shorts of this buffer to another short buffer's remaining shorts. * * @param otherBuffer another short buffer. * @return a negative value if this is less than {@code otherBuffer}; 0 if this equals to * {@code otherBuffer}; a positive value if this is greater than {@code otherBuffer}. * @exception ClassCastException if {@code otherBuffer} is not a short buffer. */ public int compareTo (ShortBuffer otherBuffer) { int compareRemaining = (remaining() < otherBuffer.remaining()) ? remaining() : otherBuffer.remaining(); int thisPos = position; int otherPos = otherBuffer.position; short thisByte, otherByte; while (compareRemaining > 0) { thisByte = get(thisPos); otherByte = otherBuffer.get(otherPos); if (thisByte != otherByte) { return thisByte < otherByte ? -1 : 1; } thisPos++; otherPos++; compareRemaining--; } return remaining() - otherBuffer.remaining(); } /** Returns a duplicated buffer that shares its content with this buffer. *

The duplicated buffer's position, limit, capacity and mark are the same as this buffer. * The duplicated buffer's read-only property and byte order are the same as this buffer's. *

*

The new buffer shares its content with this buffer, which means either buffer's change * of content will be visible to the other. The two buffer's position, limit and mark are * independent.

* * @return a duplicated buffer that shares its content with this buffer. */ public ShortBuffer duplicate () { ShortBuffer buf = new ShortBuffer(byteBuffer.duplicate()); buf.limit = limit; buf.position = position; buf.mark = mark; return buf; } /** Checks whether this short buffer is equal to another object. *

If {@code other} is not a short buffer then {@code false} is returned. Two short buffers * are equal if and only if their remaining shorts are exactly the same. Position, limit, * capacity and mark are not considered.

* * @param other the object to compare with this short buffer. * @return {@code true} if this short buffer is equal to {@code other}, {@code false} otherwise. */ public boolean equals (Object other) { if (!(other instanceof ShortBuffer)) { return false; } ShortBuffer otherBuffer = (ShortBuffer)other; if (remaining() != otherBuffer.remaining()) { return false; } int myPosition = position; int otherPosition = otherBuffer.position; boolean equalSoFar = true; while (equalSoFar && (myPosition < limit)) { equalSoFar = get(myPosition++) == otherBuffer.get(otherPosition++); } return equalSoFar; } /** Returns the short at the current position and increases the position by 1. * * @return the short at the current position. * @exception BufferUnderflowException if the position is equal or greater than limit. */ public short get () { // if (position == limit) { // throw new BufferUnderflowException(); // } return (short)(double)shortArray.getAt(position++); } /** Reads shorts from the current position into the specified short array and increases the * position by the number of shorts read. *

Calling this method has the same effect as {@code get(dest, 0, dest.length)}.

* * @param dest the destination short array. * @return this buffer. * @exception BufferUnderflowException if {@code dest.length} is greater than {@code remaining()}. */ public ShortBuffer get (short[] dest) { return get(dest, 0, dest.length); } /** Reads shorts from the current position into the specified short array, starting from the * specified offset, and increases the position by the number of shorts read. * * @param dest the target short array. * @param off the offset of the short array, must not be negative and not greater than {@code * dest.length}. * @param len the number of shorts to read, must be no less than zero and not greater than * {@code dest.length - off}. * @return this buffer. * @exception IndexOutOfBoundsException if either {@code off} or {@code len} is invalid. * @exception BufferUnderflowException if {@code len} is greater than {@code remaining()}. */ public ShortBuffer get (short[] dest, int off, int len) { int length = dest.length; if (off < 0 || len < 0 || (long)off + (long)len > length) { throw new IndexOutOfBoundsException(); } if (len > remaining()) { throw new BufferUnderflowException(); } for (int i = off; i < off + len; i++) { dest[i] = get(); } return this; } /** Returns the short at the specified index; the position is not changed. * * @param index the index, must not be negative and less than limit. * @return a short at the specified index. * @exception IndexOutOfBoundsException if index is invalid. */ public short get (int index) { // if (index < 0 || index >= limit) { // throw new IndexOutOfBoundsException(); // } return (short)(double)shortArray.getAt(index); } /** Indicates whether this buffer is based on a short array and is read/write. * * @return {@code true} if this buffer is based on a short array and provides read/write * access, {@code false} otherwise. */ public final boolean hasArray () { return false; } /** Calculates this buffer's hash code from the remaining chars. The position, limit, capacity * and mark don't affect the hash code. * * @return the hash code calculated from the remaining shorts. */ public int hashCode () { int myPosition = position; int hash = 0; while (myPosition < limit) { hash = hash + get(myPosition++); } return hash; } /** Indicates whether this buffer is direct. A direct buffer will try its best to take * advantage of native memory APIs and it may not stay in the Java heap, so it is not affected * by garbage collection. *

A short buffer is direct if it is based on a byte buffer and the byte buffer is direct. *

* * @return {@code true} if this buffer is direct, {@code false} otherwise. */ public boolean isDirect () { return true; } /** Returns the byte order used by this buffer when converting shorts from/to bytes. *

If this buffer is not based on a byte buffer, then always return the platform's native * byte order.

* * @return the byte order used by this buffer when converting shorts from/to bytes. */ public ByteOrder order () { return ByteOrder.nativeOrder(); } /** Writes the given short to the current position and increases the position by 1. * * @param s the short to write. * @return this buffer. * @exception BufferOverflowException if position is equal or greater than limit. * @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer. */ public ShortBuffer put (short c) { // if (position == limit) { // throw new BufferOverflowException(); // } shortArray.setAt(position++, (double) c); return this; } /** Writes shorts from the given short array to the current position and increases the position * by the number of shorts written.

Calling this method has the same effect as {@code * put(src, 0, src.length)}.

* * @param src the source short array. * @return this buffer. * @exception BufferOverflowException if {@code remaining()} is less than {@code src.length}. * @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer. */ public final ShortBuffer put (short[] src) { return put(src, 0, src.length); } /** Writes shorts from the given short array, starting from the specified offset, to the * current position and increases the position by the number of shorts written. * * @param src the source short array. * @param off the offset of short array, must not be negative and not greater than {@code src.length}. * @param len the number of shorts to write, must be no less than zero and not greater than * {@code src.length - off}. * @return this buffer. * @exception BufferOverflowException if {@code remaining()} is less than {@code len}. * @exception IndexOutOfBoundsException if either {@code off} or {@code len} is invalid. * @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer. */ public ShortBuffer put (short[] src, int off, int len) { int length = src.length; if (off < 0 || len < 0 || (long)off + (long)len > length) { throw new IndexOutOfBoundsException(); } if (len > remaining()) { throw new BufferOverflowException(); } for (int i = off; i < off + len; i++) { put(src[i]); } return this; } /** Writes all the remaining shorts of the {@code src} short buffer to this buffer's current * position, and increases both buffers' position by the number of shorts copied. * * @param src the source short buffer. * @return this buffer. * @exception BufferOverflowException if {@code src.remaining()} is greater than this buffer's * {@code remaining()}. * @exception IllegalArgumentException if {@code src} is this buffer. * @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer. */ public ShortBuffer put (ShortBuffer src) { if (src == this) { throw new IllegalArgumentException(); } if (src.remaining() > remaining()) { throw new BufferOverflowException(); } short[] contents = new short[src.remaining()]; src.get(contents); put(contents); return this; } /** Writes a short to the specified index of this buffer; the position is not changed. * * @param index the index, must not be negative and less than the limit. * @param s the short to write. * @return this buffer. * @exception IndexOutOfBoundsException if index is invalid. * @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer. */ public ShortBuffer put (int index, short c) { // if (index < 0 || index >= limit) { // throw new IndexOutOfBoundsException(); // } shortArray.setAt(index, (double) c); return this; } /** Returns a sliced buffer that shares its content with this buffer. *

The sliced buffer's capacity will be this buffer's {@code remaining()}, and its zero * position will correspond to this buffer's current position. The new buffer's position will * be 0, limit will be its capacity, and its mark is cleared. The new buffer's read-only * property and byte order are same as this buffer's.

*

The new buffer shares its content with this buffer, which means either buffer's change * of content will be visible to the other. The two buffer's position, limit and mark are * independent.

* * @return a sliced buffer that shares its content with this buffer. */ public ShortBuffer slice () { byteBuffer.limit(limit << 1); byteBuffer.position(position << 1); ShortBuffer result = new ShortBuffer(byteBuffer.slice()); byteBuffer.clear(); return result; } /** Returns a string representing the state of this short buffer. * * @return a string representing the state of this short buffer. */ public String toString () { StringBuffer buf = new StringBuffer(); buf.append(getClass().getName()); buf.append(", status: capacity="); //$NON-NLS-1$ buf.append(capacity()); buf.append(" position="); //$NON-NLS-1$ buf.append(position()); buf.append(" limit="); //$NON-NLS-1$ buf.append(limit()); return buf.toString(); } @Override public ArrayBufferView getTypedArray () { return shortArray; } @Override public int getElementSize () { return 2; } @Override public int getElementType() { return 0x1402; // GL_SHORT } public boolean isReadOnly() { return false; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy