org.jruby.ir.dataflow.FlowGraphNode Maven / Gradle / Ivy
package org.jruby.ir.dataflow;
import java.util.BitSet;
import java.util.List;
import org.jruby.ir.instructions.Instr;
import org.jruby.ir.representations.BasicBlock;
import org.jruby.ir.util.Edge;
/* This framework right now implicitly uses the CFG as the flow graph -- perhaps it is worth abstracting away from this assumption
* so that we can use this framework over non-CFG flow graphs.
*
* In any case, till such time we generalize this to other kinds of flow graphs, a flow graph node is just a wrapper over a CFG node,
* the basic block. As such, a flow graph is not explicitly constructed.
*
* Different dataflow problems encapsulate different dataflow properties, and a different flow graph node is built in each case */
public abstract class FlowGraphNode {
public FlowGraphNode(DataFlowProblem p, BasicBlock n) {
problem = p;
basicBlock = n;
rescuer = problem.getScope().cfg().getRescuerBBFor(basicBlock);
}
/**
* Initialize this data flow node to compute the new solution
* This is done before iteratively calling the MEET operator.
*/
public abstract void initSolnForNode();
/**
* "MEET" current solution of "IN/OUT" with "OUT/IN(pred)", where "pred"
* is a predecessor of the current node! The choice of "IN/OUT" is
* determined by the direction of data flow.
*/
public abstract void compute_MEET(Edge e, BasicBlock source, FlowGraphNode pred);
/** Compute "OUT/IN" for the current node! The choice of "IN/OUT" is
* determined by the direction of data flow. OUT/IN = transfer-function
* (facts at start/end of node, instructions of current node processed in
* fwd/reverse dirn)
*/
public abstract boolean applyTransferFunction();
/**
* Builds the data-flow variables (or facts) for a particular instruction.
*/
public abstract void buildDataFlowVars(Instr i);
/**
* Initialize this data flow node for solving the current problem
* This is done after building dataflow variables for the problem.
*/
public void init() {
}
/**
* After meet has been performed, do some more logic.
*/
public void finalizeSolnForNode() {
}
public BasicBlock getBB() {
return basicBlock;
}
/** Builds the data-flow variables (or facts) for a particular node.
Need only create the DF_Var for them to be added to the problem.
Goes over the instructions in this basic block and collect
all relevant LOCAL data flow vars for this problem! */
public void buildDataFlowVars() {
for (Instr i: basicBlock.getInstrs()) {
buildDataFlowVars(i);
}
}
private void processDestBB(List workList, BitSet bbSet, BasicBlock d) {
int id = d.getID();
if (bbSet.get(id) == false) {
bbSet.set(id);
workList.add(problem.getFlowGraphNode(d));
}
}
public void computeDataFlowInfo(List workList, BitSet bbSet) {
// System.out.println("----- processing bb " + basicBlock.getID() + " -----");
bbSet.clear(basicBlock.getID());
// Compute meet over all "sources" and compute "destination" basic blocks that should then be processed.
// sources & targets depends on direction of the data flow problem
initSolnForNode();
if (problem.getFlowDirection() == DataFlowProblem.DF_Direction.FORWARD) {
for (Edge e: problem.getScope().cfg().getIncomingEdges(basicBlock)) {
BasicBlock b = (BasicBlock)e.getSource().getData();
compute_MEET(e, b, problem.getFlowGraphNode(b));
}
} else if (problem.getFlowDirection() == DataFlowProblem.DF_Direction.BACKWARD) {
for (Edge e: problem.getScope().cfg().getOutgoingEdges(basicBlock)) {
BasicBlock b = (BasicBlock)e.getDestination().getData();
compute_MEET(e, b, problem.getFlowGraphNode(b));
}
} else {
throw new RuntimeException("Bidirectional data flow computation not implemented yet!");
}
finalizeSolnForNode();
// If the solution has changed, add "dsts" to the work list.
// No duplicates please which is why we have bbset.
boolean changed = applyTransferFunction();
if (changed) {
if (problem.getFlowDirection() == DataFlowProblem.DF_Direction.FORWARD) {
for (BasicBlock b: problem.getScope().cfg().getOutgoingDestinations(basicBlock)) {
processDestBB(workList, bbSet, b);
}
} else if (problem.getFlowDirection() == DataFlowProblem.DF_Direction.BACKWARD) {
for (BasicBlock b: problem.getScope().cfg().getIncomingSources(basicBlock)) {
processDestBB(workList, bbSet, b);
}
}
}
}
public boolean hasExceptionsRescued() {
return rescuer != null;
}
public FlowGraphNode getExceptionTargetNode() {
// If there is a rescue node, on exception, control goes to the rescuer bb. If not, it goes to the scope exit.
return problem.getFlowGraphNode(rescuer == null ? problem.getScope().cfg().getExitBB() : rescuer);
}
public FlowGraphNode getNonExitBBExceptionTargetNode() {
// If there is a rescue node, on exception, control goes to the rescuer bb. If not, it goes to the scope exit.
return rescuer == null ? null : problem.getFlowGraphNode(rescuer);
}
/* --------- protected fields/methods below --------- */
protected DataFlowProblem problem; // Dataflow problem with which this node is associated
protected BasicBlock basicBlock; // CFG node for which this node contains info.
private BasicBlock rescuer; // Basicblock that protects any exceptions raised in this node
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy