Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/***** BEGIN LICENSE BLOCK *****
* Version: CPL 1.0/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Common Public
* License Version 1.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.eclipse.org/legal/cpl-v10.html
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* Copyright (C) 2002-2004 Jan Arne Petersen
* Copyright (C) 2002-2004 Anders Bengtsson
* Copyright (C) 2003-2004 Thomas E Enebo
* Copyright (C) 2004 Charles O Nutter
* Copyright (C) 2004 Stefan Matthias Aust
* Copyright (C) 2005 Derek Berner
* Copyright (C) 2006 Evan Buswell
* Copyright (C) 2007 Nick Sieger
* Copyright (C) 2009 Joseph LaFata
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the CPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the CPL, the GPL or the LGPL.
***** END LICENSE BLOCK *****/
package org.jruby.util;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import org.jcodings.Encoding;
import org.jcodings.specific.ASCIIEncoding;
import org.jcodings.specific.USASCIIEncoding;
import org.jcodings.specific.UTF8Encoding;
import org.jruby.platform.Platform;
import org.jruby.Ruby;
import org.jruby.RubyArray;
import org.jruby.RubyBignum;
import org.jruby.RubyFixnum;
import org.jruby.RubyFloat;
import org.jruby.RubyKernel;
import org.jruby.RubyNumeric;
import org.jruby.RubyObject;
import org.jruby.RubyString;
import org.jruby.runtime.ThreadContext;
import org.jruby.runtime.builtin.IRubyObject;
public class Pack {
private static final byte[] sSp10 = " ".getBytes();
private static final byte[] sNil10 = "\000\000\000\000\000\000\000\000\000\000".getBytes();
private static final int IS_STAR = -1;
private static final ASCIIEncoding ASCII = ASCIIEncoding.INSTANCE;
private static final USASCIIEncoding USASCII = USASCIIEncoding.INSTANCE;
private static final UTF8Encoding UTF8 = UTF8Encoding.INSTANCE;
/** Native pack type.
**/
private static final String NATIVE_CODES = "sSiIlL";
private static final String MAPPED_CODES = "sSiIqQ";
private static final char BE = '>' - 1; // 61, only 1 char "free" b/w q and s
private static final char LE = '<'; // 60
private static final String ENDIANESS_CODES = new String(new char[] {
's' + BE, 'S' + BE/*n*/, 'i' + BE, 'I' + BE, 'l' + BE, 'L' + BE/*N*/, 'q' + BE, 'Q' + BE,
's' + LE, 'S' + LE/*v*/, 'i' + LE, 'I' + LE, 'l' + LE, 'L' + LE/*V*/, 'q' + LE, 'Q' + LE});
private static final String UNPACK_IGNORE_NULL_CODES = "cC";
private static final String PACK_IGNORE_NULL_CODES = "cCiIlLnNqQsSvV";
private static final String PACK_IGNORE_NULL_CODES_WITH_MODIFIERS = "lLsS";
private static final String sTooFew = "too few arguments";
private static final byte[] hex_table;
private static final byte[] uu_table;
private static final byte[] b64_table;
private static final byte[] sHexDigits;
private static final int[] b64_xtable = new int[256];
private static final Converter[] converters = new Converter[256];
private static final BigInteger QUAD_MIN = new BigInteger("-ffffffffffffffff", 16);
private static final BigInteger QUAD_MAX = new BigInteger("ffffffffffffffff", 16);
/*
* convert into longs, returning unsigned 64-bit values as signed longs
* ( num2long raises a RangeError on values > Long.MAX_VALUE )
*/
private static long num2quad(IRubyObject arg) {
if (arg == arg.getRuntime().getNil()) {
return 0L;
}
else if (arg instanceof RubyBignum) {
BigInteger big = ((RubyBignum)arg).getValue();
if (big.compareTo(QUAD_MIN) < 0 || big.compareTo(QUAD_MAX) > 0) {
throw arg.getRuntime().newRangeError("bignum too big to convert into `quad int'");
}
return big.longValue();
}
return RubyNumeric.num2long(arg);
}
private static long num2quad19(IRubyObject arg) {
if (arg == arg.getRuntime().getNil()) {
return 0L;
}
else if (arg instanceof RubyBignum) {
BigInteger big = ((RubyBignum)arg).getValue();
return big.longValue();
}
return RubyNumeric.num2long(arg);
}
private static float obj2flt(Ruby runtime, IRubyObject o) {
if (o instanceof RubyString) return (float) str2dbl(runtime, (RubyString) o);
return (float) RubyKernel.new_float(o, o).getDoubleValue();
}
private static float obj2flt19(Ruby runtime, IRubyObject o) {
return (float) TypeConverter.toFloat(runtime, o).getDoubleValue();
}
private static double str2dbl(Ruby runtime, RubyString o) {
String str = o.asJavaString();
double d = RubyNumeric.num2dbl(o.convertToFloat());
if (str.matches("^\\s*[-+]?\\s*[0-9].*")) return d;
throw runtime.newArgumentError("invalid value for Float");
}
private static double obj2dbl(Ruby runtime, IRubyObject o) {
if (o instanceof RubyString) return str2dbl(runtime, (RubyString) o);
return RubyKernel.new_float(o, o).getDoubleValue();
}
private static double obj2dbl19(Ruby runtime, IRubyObject o) {
return TypeConverter.toFloat(runtime, o).getDoubleValue();
}
static {
hex_table = ByteList.plain("0123456789ABCDEF");
uu_table =
ByteList.plain("`!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_");
b64_table =
ByteList.plain("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/");
sHexDigits = ByteList.plain("0123456789abcdef0123456789ABCDEFx");
// b64_xtable for decoding Base 64
for (int i = 0; i < 256; i++) {
b64_xtable[i] = -1;
}
for (int i = 0; i < 64; i++) {
b64_xtable[(int)b64_table[i]] = i;
}
// single precision, little-endian
converters['e'] = new Converter(4) {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return RubyFloat.newFloat(runtime, decodeFloatLittleEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeFloatLittleEndian(result, obj2flt(runtime, o));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeFloatLittleEndian(result, obj2flt19(runtime, o));
}
};
// single precision, big-endian
converters['g'] = new Converter(4) {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return RubyFloat.newFloat(runtime, decodeFloatBigEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeFloatBigEndian(result, obj2flt(runtime, o));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeFloatBigEndian(result, obj2flt19(runtime, o));
}
};
// single precision, native
Converter tmp = new Converter(4) {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return RubyFloat.newFloat(runtime,
Platform.BYTE_ORDER == Platform.BIG_ENDIAN ?
decodeFloatBigEndian(enc) : decodeFloatLittleEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
if (Platform.BYTE_ORDER == Platform.BIG_ENDIAN) {
encodeFloatBigEndian(result, obj2flt(runtime, o));
} else {
encodeFloatLittleEndian(result, obj2flt(runtime, o));
}
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result) {
if (Platform.BYTE_ORDER == Platform.BIG_ENDIAN) {
encodeFloatBigEndian(result, obj2flt19(runtime, o));
} else {
encodeFloatLittleEndian(result, obj2flt19(runtime, o));
}
}
};
converters['F'] = tmp; // single precision, native
converters['f'] = tmp; // single precision, native
// double precision, little-endian
converters['E'] = new Converter(8) {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return RubyFloat.newFloat(runtime, decodeDoubleLittleEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeDoubleLittleEndian(result, obj2dbl(runtime, o));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeDoubleLittleEndian(result, obj2dbl19(runtime, o));
}
};
// double precision, big-endian
converters['G'] = new Converter(8) {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return RubyFloat.newFloat(runtime, decodeDoubleBigEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeDoubleBigEndian(result, obj2dbl(runtime, o));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeDoubleBigEndian(result, obj2dbl19(runtime, o));
}
};
// double precision, native
tmp = new Converter(8) {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
if (Platform.BYTE_ORDER == Platform.BIG_ENDIAN) {
return RubyFloat.newFloat(runtime, decodeDoubleBigEndian(enc));
} else {
return RubyFloat.newFloat(runtime, decodeDoubleLittleEndian(enc));
}
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
if (Platform.BYTE_ORDER == Platform.BIG_ENDIAN) {
encodeDoubleBigEndian(result, obj2dbl(runtime, o));
} else {
encodeDoubleLittleEndian(result, obj2dbl(runtime, o));
}
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeDoubleLittleEndian(result, obj2dbl19(runtime, o));
}
};
converters['D'] = tmp; // double precision, native
converters['d'] = tmp; // double precision, native
// signed short, little-endian
tmp = new QuadConverter(2, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(decodeShortUnsignedLittleEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeShortLittleEndian(result, overflowQuad(num2quad(o)));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeShortLittleEndian(result, overflowQuad(num2quad19(o)));
}
};
converters['v'] = tmp;
converters['S' + LE] = tmp;
// signed short, big-endian
tmp = new QuadConverter(2, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(decodeShortUnsignedBigEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result) {
encodeShortBigEndian(result, overflowQuad(num2quad(o)));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result) {
encodeShortBigEndian(result, overflowQuad(num2quad19(o)));
}
};
converters['n'] = tmp;
converters['S' + BE] = tmp;
// signed short, native
converters['s'] = new QuadConverter(2, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(Platform.BYTE_ORDER == Platform.BIG_ENDIAN ?
decodeShortBigEndian(enc) : decodeShortLittleEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result) {
encodeShortByByteOrder(result, overflowQuad(num2quad(o))); // XXX: 0xffff0000 on BE?
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result) {
encodeShortByByteOrder(result, overflowQuad(num2quad19(o))); // XXX: 0xffff0000 on BE?
}
};
// unsigned short, native
converters['S'] = new QuadConverter(2, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(Platform.BYTE_ORDER == Platform.BIG_ENDIAN ?
decodeShortUnsignedBigEndian(enc) : decodeShortUnsignedLittleEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeShortByByteOrder(result, overflowQuad(num2quad(o)));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeShortByByteOrder(result, overflowQuad(num2quad19(o)));
}
};
// signed short, little endian
converters['s' + LE] = new QuadConverter(2, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(decodeShortLittleEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result) {
encodeShortLittleEndian(result, overflowQuad(num2quad(o))); // XXX: 0xffff0000 on BE?
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result) {
encodeShortLittleEndian(result, overflowQuad(num2quad19(o))); // XXX: 0xffff0000 on BE?
}
};
// signed short, big endian
converters['s' + BE] = new QuadConverter(2, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(decodeShortBigEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result) {
encodeShortBigEndian(result, overflowQuad(num2quad(o))); // XXX: 0xffff0000 on BE?
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result) {
encodeShortBigEndian(result, overflowQuad(num2quad19(o))); // XXX: 0xffff0000 on BE?
}
};
// signed char
converters['c'] = new Converter(1, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
int c = enc.get();
return runtime.newFixnum(c > (char) 127 ? c-256 : c);
}
public void encode(Ruby runtime, IRubyObject o, ByteList result) {
byte c = (byte) (RubyNumeric.num2long(o) & 0xff);
result.append(c);
}
};
// unsigned char
converters['C'] = new Converter(1, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(enc.get() & 0xFF);
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
byte c = o == runtime.getNil() ? 0 : (byte) (RubyNumeric.num2long(o) & 0xff);
result.append(c);
}
};
// unsigned long, little-endian
tmp = new Converter(4, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(decodeIntUnsignedLittleEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeIntLittleEndian(result, (int) RubyNumeric.num2long(o));
}
};
converters['V'] = tmp;
converters['L' + LE] = tmp;
converters['I' + LE] = tmp;
// unsigned long, big-endian
tmp = new Converter(4, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(decodeIntUnsignedBigEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeIntBigEndian(result, (int) RubyNumeric.num2long(o));
}
};
converters['N'] = tmp;
converters['L' + BE] = tmp;
converters['I' + BE] = tmp;
// unsigned int, native
tmp = new Converter(4, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
if (Platform.BYTE_ORDER == Platform.BIG_ENDIAN) {
return runtime.newFixnum(decodeIntUnsignedBigEndian(enc));
} else {
return runtime.newFixnum(decodeIntUnsignedLittleEndian(enc));
}
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
int s = o == runtime.getNil() ? 0 : (int) RubyNumeric.num2long(o);
packInt_i(result, s);
}
};
converters['I'] = tmp; // unsigned int, native
converters['L'] = tmp; // unsigned long, native
// int, native
tmp = new Converter(4, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
int value = unpackInt_i(enc);
return runtime.newFixnum(value);
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
int s = o == runtime.getNil() ? 0 : (int)RubyNumeric.num2long(o);
packInt_i(result, s);
}
};
converters['i'] = tmp; // int, native
converters['l'] = tmp; // long, native
// int, little endian
tmp = new Converter(4, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(decodeIntLittleEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
int s = o == runtime.getNil() ? 0 : (int)RubyNumeric.num2long(o);
encodeIntLittleEndian(result, s);
}
};
converters['i' + LE] = tmp; // int, native
converters['l' + LE] = tmp; // long, native
// int, big endian
tmp = new Converter(4, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(decodeIntBigEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
int s = o == runtime.getNil() ? 0 : (int)RubyNumeric.num2long(o);
encodeIntBigEndian(result, s);
}
};
converters['i' + BE] = tmp; // int, native
converters['l' + BE] = tmp; // long, native
// 64-bit number, native (as bignum)
converters['Q'] = new QuadConverter(8, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
long l = Platform.BYTE_ORDER == Platform.BIG_ENDIAN ? decodeLongBigEndian(enc) : decodeLongLittleEndian(enc);
return RubyBignum.bignorm(runtime,BigInteger.valueOf(l).and(new BigInteger("FFFFFFFFFFFFFFFF", 16)));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeLongByByteOrder(result, num2quad(o));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeLongByByteOrder(result, num2quad19(o));
}
};
// 64-bit number, little endian (as bignum)
converters['Q' + LE] = new QuadConverter(8, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
long l = decodeLongLittleEndian(enc);
return RubyBignum.bignorm(runtime,BigInteger.valueOf(l).and(new BigInteger("FFFFFFFFFFFFFFFF", 16)));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeLongLittleEndian(result, num2quad(o));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeLongLittleEndian(result, num2quad19(o));
}
};
// 64-bit number, big endian (as bignum)
converters['Q' + BE] = new QuadConverter(8, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
long l = decodeLongBigEndian(enc);
return RubyBignum.bignorm(runtime,BigInteger.valueOf(l).and(new BigInteger("FFFFFFFFFFFFFFFF", 16)));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeLongBigEndian(result, num2quad(o));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeLongBigEndian(result, num2quad19(o));
}
};
// 64-bit number, native (as fixnum)
converters['q'] = new QuadConverter(8, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(Platform.BYTE_ORDER == Platform.BIG_ENDIAN ?
decodeLongBigEndian(enc) : decodeLongLittleEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeLongByByteOrder(result, num2quad(o));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeLongByByteOrder(result, num2quad19(o));
}
};
// 64-bit number, little-endian (as fixnum)
converters['q' + LE] = new QuadConverter(8, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(decodeLongLittleEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeLongLittleEndian(result, num2quad(o));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeLongLittleEndian(result, num2quad19(o));
}
};
// 64-bit number, big-endian (as fixnum)
converters['q' + BE] = new QuadConverter(8, "Integer") {
public IRubyObject decode(Ruby runtime, ByteBuffer enc) {
return runtime.newFixnum(decodeLongBigEndian(enc));
}
public void encode(Ruby runtime, IRubyObject o, ByteList result){
encodeLongBigEndian(result, num2quad(o));
}
@Override
public void encode19(Ruby runtime, IRubyObject o, ByteList result){
encodeLongBigEndian(result, num2quad19(o));
}
};
}
public static int unpackInt_i(ByteBuffer enc) {
int value;
if (Platform.BYTE_ORDER == Platform.BIG_ENDIAN) {
value = decodeIntBigEndian(enc);
} else {
value = decodeIntLittleEndian(enc);
}
return value;
}
public static ByteList packInt_i(ByteList result, int s) {
if (Platform.BYTE_ORDER == Platform.BIG_ENDIAN) {
encodeIntBigEndian(result, s);
} else {
encodeIntLittleEndian(result, s);
}
return result;
}
/**
* encodes a String in base64 or its uuencode variant.
* appends the result of the encoding in a StringBuffer
* @param io2Append The StringBuffer which should receive the result
* @param i2Encode The String to encode
* @param iLength The max number of characters to encode
* @param iType the type of encoding required (this is the same type as used by the pack method)
* @param tailLf true if the traililng "\n" is needed
* @return the io2Append buffer
**/
private static ByteList encodes(Ruby runtime, ByteList io2Append,byte[]charsToEncode, int startIndex, int length, int charCount, byte encodingType, boolean tailLf) {
charCount = charCount < length ? charCount : length;
io2Append.ensure(charCount * 4 / 3 + 6);
int i = startIndex;
byte[] lTranslationTable = encodingType == 'u' ? uu_table : b64_table;
byte lPadding;
if (encodingType == 'u') {
if (charCount >= lTranslationTable.length) {
throw runtime.newArgumentError(
""
+ charCount
+ " is not a correct value for the number of bytes per line in a u directive. Correct values range from 0 to "
+ lTranslationTable.length);
}
io2Append.append(lTranslationTable[charCount]);
lPadding = '`';
} else {
lPadding = '=';
}
while (charCount >= 3) {
byte lCurChar = charsToEncode[i++];
byte lNextChar = charsToEncode[i++];
byte lNextNextChar = charsToEncode[i++];
io2Append.append(lTranslationTable[077 & (lCurChar >>> 2)]);
io2Append.append(lTranslationTable[077 & (((lCurChar << 4) & 060) | ((lNextChar >>> 4) & 017))]);
io2Append.append(lTranslationTable[077 & (((lNextChar << 2) & 074) | ((lNextNextChar >>> 6) & 03))]);
io2Append.append(lTranslationTable[077 & lNextNextChar]);
charCount -= 3;
}
if (charCount == 2) {
byte lCurChar = charsToEncode[i++];
byte lNextChar = charsToEncode[i++];
io2Append.append(lTranslationTable[077 & (lCurChar >>> 2)]);
io2Append.append(lTranslationTable[077 & (((lCurChar << 4) & 060) | ((lNextChar >> 4) & 017))]);
io2Append.append(lTranslationTable[077 & (((lNextChar << 2) & 074) | (('\0' >> 6) & 03))]);
io2Append.append(lPadding);
} else if (charCount == 1) {
byte lCurChar = charsToEncode[i++];
io2Append.append(lTranslationTable[077 & (lCurChar >>> 2)]);
io2Append.append(lTranslationTable[077 & (((lCurChar << 4) & 060) | (('\0' >>> 4) & 017))]);
io2Append.append(lPadding);
io2Append.append(lPadding);
}
if (tailLf) {
io2Append.append('\n');
}
return io2Append;
}
/**
* encodes a String with the Quoted printable, MIME encoding (see RFC2045).
* appends the result of the encoding in a StringBuffer
* @param io2Append The StringBuffer which should receive the result
* @param i2Encode The String to encode
* @param iLength The max number of characters to encode
* @return the io2Append buffer
**/
private static ByteList qpencode(ByteList io2Append, ByteList i2Encode, int iLength) {
io2Append.ensure(1024);
int lCurLineLength = 0;
int lPrevChar = -1;
byte[] l2Encode = i2Encode.getUnsafeBytes();
try {
int end = i2Encode.getBegin() + i2Encode.getRealSize();
for (int i = i2Encode.getBegin(); i < end; i++) {
int lCurChar = l2Encode[i] & 0xff;
if (lCurChar > 126 || (lCurChar < 32 && lCurChar != '\n' && lCurChar != '\t') || lCurChar == '=') {
io2Append.append('=');
io2Append.append(hex_table[lCurChar >>> 4]);
io2Append.append(hex_table[lCurChar & 0x0f]);
lCurLineLength += 3;
lPrevChar = -1;
} else if (lCurChar == '\n') {
if (lPrevChar == ' ' || lPrevChar == '\t') {
io2Append.append('=');
io2Append.append(lCurChar);
}
io2Append.append(lCurChar);
lCurLineLength = 0;
lPrevChar = lCurChar;
} else {
io2Append.append(lCurChar);
lCurLineLength++;
lPrevChar = lCurChar;
}
if (lCurLineLength > iLength) {
io2Append.append('=');
io2Append.append('\n');
lCurLineLength = 0;
lPrevChar = '\n';
}
}
} catch (ArrayIndexOutOfBoundsException e) {
//normal exit, this should be faster than a test at each iterations for string with more than
//about 40 char
}
if (lCurLineLength > 0) {
io2Append.append('=');
io2Append.append('\n');
}
return io2Append;
}
/**
* Decodes str (which may contain binary data) according to the format
* string, returning an array of each value extracted.
* The format string consists of a sequence of single-character directives.
* Each directive may be followed by a number, indicating the number of times to repeat with this directive. An asterisk (``*'') will use up all
* remaining elements.
* The directives sSiIlL may each be followed by an underscore (``_'') to use the underlying platform's native size for the specified type; otherwise, it uses a platform-independent consistent size.
* Spaces are ignored in the format string.
* @see RubyArray#pack
*
Treat sizeof(double) characters as a native
* double.
*
Float
*
*
*
E
*
Treat sizeof(double) characters as a double in
* little-endian byte order.
*
Float
*
*
*
e
*
Treat sizeof(float) characters as a float in
* little-endian byte order.
*
Float
*
*
*
f
*
Treat sizeof(float) characters as a native float.
*
Float
*
*
*
G
*
Treat sizeof(double) characters as a double in
* network byte order.
*
Float
*
*
*
g
*
Treat sizeof(float) characters as a float in
* network byte order.
*
Float
*
*
*
H
*
Extract hex nibbles from each character (most
* significant first).
*
String
*
*
*
h
*
Extract hex nibbles from each character (least
* significant first).
*
String
*
*
*
I
*
Treat sizeof(int)
* 1 successive
* characters as an unsigned native integer.
*
Integer
*
*
*
i
*
Treat sizeof(int)
* 1 successive
* characters as a signed native integer.
*
Integer
*
*
*
L
*
Treat four1 successive
* characters as an unsigned native
* long integer.
*
Integer
*
*
*
l
*
Treat four1 successive
* characters as a signed native
* long integer.
*
Integer
*
*
*
M
*
Extract a quoted-printable string.
*
String
*
*
*
m
*
Extract a base64 encoded string.
*
String
*
*
*
N
*
Treat four characters as an unsigned long in network
* byte order.
*
Fixnum
*
*
*
n
*
Treat two characters as an unsigned short in network
* byte order.
*
Fixnum
*
*
*
P
*
Treat sizeof(char *) characters as a pointer, and
* return len characters from the referenced location.
*
String
*
*
*
p
*
Treat sizeof(char *) characters as a pointer to a
* null-terminated string.
*
String
*
*
*
S
*
Treat two1 successive characters as an unsigned
* short in
* native byte order.
*
Fixnum
*
*
*
s
*
Treat two1 successive
* characters as a signed short in
* native byte order.
*
Fixnum
*
*
*
U
*
Extract UTF-8 characters as unsigned integers.
*
Integer
*
*
*
u
*
Extract a UU-encoded string.
*
String
*
*
*
V
*
Treat four characters as an unsigned long in little-endian
* byte order.
*
Fixnum
*
*
*
v
*
Treat two characters as an unsigned short in little-endian
* byte order.
*
Fixnum
*
*
*
X
*
Skip backward one character.
*
---
*
*
*
x
*
Skip forward one character.
*
---
*
*
*
Z
*
String with trailing nulls removed.
*
String
*
*
*
@
*
Skip to the offset given by the length argument.
*
---
*
*
*
*
*
*
* 1 May be modified by appending ``_'' to the directive.
*
*
*
*
*
**/
public static RubyArray unpack(Ruby runtime, ByteList encodedString, ByteList formatString) {
Encoding encoding = encodedString.getEncoding();
RubyArray result = runtime.newArray();
// FIXME: potentially could just use ByteList here?
ByteBuffer format = ByteBuffer.wrap(formatString.getUnsafeBytes(), formatString.begin(), formatString.length());
ByteBuffer encode = ByteBuffer.wrap(encodedString.getUnsafeBytes(), encodedString.begin(), encodedString.length());
int type = 0;
int next = safeGet(format);
while (next != 0) {
type = next;
next = safeGet(format);
if (UNPACK_IGNORE_NULL_CODES.indexOf(type) != -1 && next == 0) {
next = safeGetIgnoreNull(format);
}
// Next indicates to decode using native encoding format
if (next == '_' || next == '!') {
int index = NATIVE_CODES.indexOf(type);
if (index == -1) {
throw runtime.newArgumentError("'" + next +
"' allowed only after types " + NATIVE_CODES);
}
type = MAPPED_CODES.charAt(index);
next = safeGet(format);
}
if (next == '>' || next == '<') {
next = next == '>' ? BE : LE;
int index = ENDIANESS_CODES.indexOf(type + next);
if (index == -1) {
throw runtime.newArgumentError("'" + (char)next +
"' allowed only after types sSiIlLqQ");
}
type = ENDIANESS_CODES.charAt(index);
next = safeGet(format);
}
// How many occurrences of 'type' we want
int occurrences = 0;
if (next == 0) {
occurrences = 1;
} else {
if (next == '*') {
occurrences = IS_STAR;
next = safeGet(format);
} else if (ASCII.isDigit(next)) {
occurrences = 0;
do {
occurrences = occurrences * 10 + Character.digit((char)(next & 0xFF), 10);
next = safeGet(format);
} while (next != 0 && ASCII.isDigit(next));
} else {
occurrences = type == '@' ? 0 : 1;
}
}
// See if we have a converter for the job...
Converter converter = converters[type];
if (converter != null) {
decode(runtime, encode, occurrences, result, converter);
type = next;
continue;
}
// Otherwise the unpack should be here...
switch (type) {
case '@' :
try {
if (occurrences == IS_STAR) {
encode.position(encodedString.begin() + encode.remaining());
} else {
encode.position(encodedString.begin() + occurrences);
}
} catch (IllegalArgumentException iae) {
throw runtime.newArgumentError("@ outside of string");
}
break;
case '%' :
throw runtime.newArgumentError("% is not supported");
case 'A' :
{
if (occurrences == IS_STAR || occurrences > encode.remaining()) {
occurrences = encode.remaining();
}
byte[] potential = new byte[occurrences];
encode.get(potential);
for (int t = occurrences - 1; occurrences > 0; occurrences--, t--) {
byte c = potential[t];
if (c != '\0' && c != ' ') {
break;
}
}
result.append(RubyString.newString(runtime, new ByteList(potential, 0, occurrences, encoding, false)));
}
break;
case 'Z' :
{
boolean isStar = (occurrences == IS_STAR);
if (occurrences == IS_STAR || occurrences > encode.remaining()) {
occurrences = encode.remaining();
}
byte[] potential = new byte[occurrences];
int t = 0;
while (t < occurrences) {
byte b = encode.get();
if (b == 0) {
break;
}
potential[t] = b;
t++;
}
result.append(RubyString.newString(runtime, new ByteList(potential, 0, t, encoding, false)));
// In case when the number of occurences is
// explicitly specified, we have to read up
// the remaining garbage after the '\0' to
// satisfy the requested pattern.
if (!isStar) {
if (t < occurrences) {
// We encountered '\0' when
// were reading the buffer above,
// increment the number of read bytes.
t++;
}
while (t < occurrences) {
encode.get();
t++;
}
}
}
break;
case 'a' :
if (occurrences == IS_STAR || occurrences > encode.remaining()) {
occurrences = encode.remaining();
}
byte[] potential = new byte[occurrences];
encode.get(potential);
result.append(RubyString.newString(runtime, new ByteList(potential, encoding, false)));
break;
case 'b' :
{
if (occurrences == IS_STAR || occurrences > encode.remaining() * 8) {
occurrences = encode.remaining() * 8;
}
int bits = 0;
byte[] lElem = new byte[occurrences];
for (int lCurByte = 0; lCurByte < occurrences; lCurByte++) {
if ((lCurByte & 7) != 0) {
bits >>>= 1;
} else {
bits = encode.get();
}
lElem[lCurByte] = (bits & 1) != 0 ? (byte)'1' : (byte)'0';
}
result.append(RubyString.newString(runtime, new ByteList(lElem, encoding, false)));
}
break;
case 'B' :
{
if (occurrences == IS_STAR || occurrences > encode.remaining() * 8) {
occurrences = encode.remaining() * 8;
}
int bits = 0;
byte[] lElem = new byte[occurrences];
for (int lCurByte = 0; lCurByte < occurrences; lCurByte++) {
if ((lCurByte & 7) != 0) {
bits <<= 1;
} else {
bits = encode.get();
}
lElem[lCurByte] = (bits & 128) != 0 ? (byte)'1' : (byte)'0';
}
result.append(RubyString.newString(runtime, new ByteList(lElem, encoding, false)));
}
break;
case 'h' :
{
if (occurrences == IS_STAR || occurrences > encode.remaining() * 2) {
occurrences = encode.remaining() * 2;
}
int bits = 0;
byte[] lElem = new byte[occurrences];
for (int lCurByte = 0; lCurByte < occurrences; lCurByte++) {
if ((lCurByte & 1) != 0) {
bits >>>= 4;
} else {
bits = encode.get();
}
lElem[lCurByte] = sHexDigits[bits & 15];
}
result.append(RubyString.newString(runtime, new ByteList(lElem, encoding, false)));
}
break;
case 'H' :
{
if (occurrences == IS_STAR || occurrences > encode.remaining() * 2) {
occurrences = encode.remaining() * 2;
}
int bits = 0;
byte[] lElem = new byte[occurrences];
for (int lCurByte = 0; lCurByte < occurrences; lCurByte++) {
if ((lCurByte & 1) != 0) {
bits <<= 4;
} else {
bits = encode.get();
}
lElem[lCurByte] = sHexDigits[(bits >>> 4) & 15];
}
result.append(RubyString.newString(runtime, new ByteList(lElem, encoding, false)));
}
break;
case 'u':
{
int length = encode.remaining() * 3 / 4;
byte[] lElem = new byte[length];
int index = 0;
int s = 0;
int total = 0;
if (length > 0) s = encode.get();
while (encode.hasRemaining() && s > ' ' && s < 'a') {
int a, b, c, d;
byte[] hunk = new byte[3];
int len = (s - ' ') & 077;
s = safeGet(encode);
total += len;
if (total > length) {
len -= total - length;
total = length;
}
while (len > 0) {
int mlen = len > 3 ? 3 : len;
if (encode.hasRemaining() && s >= ' ') {
a = (s - ' ') & 077;
s = safeGet(encode);
} else
a = 0;
if (encode.hasRemaining() && s >= ' ') {
b = (s - ' ') & 077;
s = safeGet(encode);
} else
b = 0;
if (encode.hasRemaining() && s >= ' ') {
c = (s - ' ') & 077;
s = safeGet(encode);
} else
c = 0;
if (encode.hasRemaining() && s >= ' ') {
d = (s - ' ') & 077;
s = safeGet(encode);
} else
d = 0;
hunk[0] = (byte)((a << 2 | b >> 4) & 255);
hunk[1] = (byte)((b << 4 | c >> 2) & 255);
hunk[2] = (byte)((c << 6 | d) & 255);
for (int i = 0; i < mlen; i++) lElem[index++] = hunk[i];
len -= mlen;
}
if (s == '\r') {
s = safeGet(encode);
}
if (s == '\n') {
s = safeGet(encode);
}
else if (encode.hasRemaining()) {
if (safeGet(encode) == '\n') {
safeGet(encode); // Possible Checksum Byte
} else if (encode.hasRemaining()) {
encode.position(encode.position() - 1);
}
}
}
result.append(RubyString.newString(runtime, new ByteList(lElem, 0, index, encoding, false)));
}
break;
case 'm':
{
int length = encode.remaining()*3/4;
byte[] lElem = new byte[length];
int a = -1, b = -1, c = 0, d;
int index = 0;
int s = -1;
while (encode.hasRemaining()) {
a = b = c = d = -1;
// obtain a
s = safeGet(encode);
while (((a = b64_xtable[s]) == -1) && encode.hasRemaining()) {
s = safeGet(encode);
}
if (a == -1) break;
// obtain b
s = safeGet(encode);
while (((b = b64_xtable[s]) == -1) && encode.hasRemaining()) {
s = safeGet(encode);
}
if (b == -1) break;
// obtain c
s = safeGet(encode);
while (((c = b64_xtable[s]) == -1) && encode.hasRemaining()) {
if (s == '=') break;
s = safeGet(encode);
}
if ((s == '=') || c == -1) {
if (s == '=') {
encode.position(encode.position() - 1);
}
break;
}
// obtain d
s = safeGet(encode);
while (((d = b64_xtable[s]) == -1) && encode.hasRemaining()) {
if (s == '=') break;
s = safeGet(encode);
}
if ((s == '=') || d == -1) {
if (s == '=') {
encode.position(encode.position() - 1);
}
break;
}
// calculate based on a, b, c and d
lElem[index++] = (byte)((a << 2 | b >> 4) & 255);
lElem[index++] = (byte)((b << 4 | c >> 2) & 255);
lElem[index++] = (byte)((c << 6 | d) & 255);
}
if (a != -1 && b != -1) {
if (c == -1 && s == '=') {
lElem[index++] = (byte)((a << 2 | b >> 4) & 255);
} else if(c != -1 && s == '=') {
lElem[index++] = (byte)((a << 2 | b >> 4) & 255);
lElem[index++] = (byte)((b << 4 | c >> 2) & 255);
}
}
result.append(RubyString.newString(runtime, new ByteList(lElem, 0, index,
ASCIIEncoding.INSTANCE, false)));
}
break;
case 'M' :
{
byte[] lElem = new byte[Math.max(encode.remaining(),0)];
int index = 0;
for(;;) {
if (!encode.hasRemaining()) break;
int c = safeGet(encode);
if (c != '=') {
lElem[index++] = (byte)c;
} else {
if (!encode.hasRemaining()) break;
encode.mark();
int c1 = safeGet(encode);
if (c1 == '\n' || (c1 == '\r' && (c1 = safeGet(encode)) == '\n')) continue;
int d1 = Character.digit(c1, 16);
if (d1 == -1) {
encode.reset();
break;
}
encode.mark();
if (!encode.hasRemaining()) break;
int c2 = safeGet(encode);
int d2 = Character.digit(c2, 16);
if (d2 == -1) {
encode.reset();
break;
}
byte value = (byte)(d1 << 4 | d2);
lElem[index++] = value;
}
}
result.append(RubyString.newString(runtime, new ByteList(lElem, 0, index,
ASCIIEncoding.INSTANCE, false)));
}
break;
case 'U' :
{
if (occurrences == IS_STAR || occurrences > encode.remaining()) {
occurrences = encode.remaining();
}
while (occurrences-- > 0 && encode.remaining() > 0) {
try {
// TODO: for now, we use a faithful
// reimplementation of MRI's algorithm,
// but should use UTF8Encoding facilities
// from Joni, once it starts prefroming
// UTF-8 content validation.
result.append(
runtime.newFixnum(utf8Decode(encode)));
} catch (IllegalArgumentException e) {
throw runtime.newArgumentError(e.getMessage());
}
}
}
break;
case 'X':
if (occurrences == IS_STAR) {
// MRI behavior: Contrary to what seems to be logical,
// when '*' is given, MRI calculates the distance
// to the end, in order to go backwards.
occurrences = /*encode.limit() - */encode.remaining();
}
try {
encode.position(encode.position() - occurrences);
} catch (IllegalArgumentException e) {
throw runtime.newArgumentError("in `unpack': X outside of string");
}
break;
case 'x':
if (occurrences == IS_STAR) {
occurrences = encode.remaining();
}
try {
encode.position(encode.position() + occurrences);
} catch (IllegalArgumentException e) {
throw runtime.newArgumentError("in `unpack': x outside of string");
}
break;
case 'w':
if (occurrences == IS_STAR || occurrences > encode.remaining()) {
occurrences = encode.remaining();
}
long ul = 0;
long ulmask = (0xfe << 56) & 0xffffffff;
RubyBignum big128 = RubyBignum.newBignum(runtime, 128);
int pos = encode.position();
while (occurrences > 0 && pos < encode.limit()) {
ul <<= 7;
ul |= encode.get(pos) & 0x7f;
if((encode.get(pos++) & 0x80) == 0) {
result.append(RubyFixnum.newFixnum(runtime, ul));
occurrences--;
ul = 0;
} else if((ul & ulmask) == 0) {
RubyBignum big = RubyBignum.newBignum(runtime, ul);
while(occurrences > 0 && pos < encode.limit()) {
big = (RubyBignum)big.op_mul(runtime.getCurrentContext(), big128);
IRubyObject v = big.op_plus(runtime.getCurrentContext(),
RubyBignum.newBignum(runtime, encode.get(pos) & 0x7f));
if(v instanceof RubyFixnum) {
big = RubyBignum.newBignum(runtime, RubyNumeric.fix2long(v));
} else if (v instanceof RubyBignum) {
big = (RubyBignum)v;
}
if((encode.get(pos++) & 0x80) == 0) {
result.add(big);
occurrences--;
ul = 0;
break;
}
}
}
}
try {
encode.position(pos);
} catch (IllegalArgumentException e) {
throw runtime.newArgumentError("in `unpack': poorly encoded input");
}
break;
}
}
return result;
}
/** rb_uv_to_utf8
*
*/
public static int utf8Decode(Ruby runtime, byte[]to, int p, int code) {
if (code <= 0x7f) {
to[p] = (byte)code;
return 1;
}
if (code <= 0x7ff) {
to[p + 0] = (byte)(((code >>> 6) & 0xff) | 0xc0);
to[p + 1] = (byte)((code & 0x3f) | 0x80);
return 2;
}
if (code <= 0xffff) {
to[p + 0] = (byte)(((code >>> 12) & 0xff) | 0xe0);
to[p + 1] = (byte)(((code >>> 6) & 0x3f) | 0x80);
to[p + 2] = (byte)((code & 0x3f) | 0x80);
return 3;
}
if (code <= 0x1fffff) {
to[p + 0] = (byte)(((code >>> 18) & 0xff) | 0xf0);
to[p + 1] = (byte)(((code >>> 12) & 0x3f) | 0x80);
to[p + 2] = (byte)(((code >>> 6) & 0x3f) | 0x80);
to[p + 3] = (byte)((code & 0x3f) | 0x80);
return 4;
}
if (code <= 0x3ffffff) {
to[p + 0] = (byte)(((code >>> 24) & 0xff) | 0xf8);
to[p + 1] = (byte)(((code >>> 18) & 0x3f) | 0x80);
to[p + 2] = (byte)(((code >>> 12) & 0x3f) | 0x80);
to[p + 3] = (byte)(((code >>> 6) & 0x3f) | 0x80);
to[p + 4] = (byte)((code & 0x3f) | 0x80);
return 5;
}
if (code <= 0x7fffffff) {
to[p + 0] = (byte)(((code >>> 30) & 0xff) | 0xfc);
to[p + 1] = (byte)(((code >>> 24) & 0x3f) | 0x80);
to[p + 2] = (byte)(((code >>> 18) & 0x3f) | 0x80);
to[p + 3] = (byte)(((code >>> 12) & 0x3f) | 0x80);
to[p + 4] = (byte)(((code >>> 6) & 0x3f) | 0x80);
to[p + 5] = (byte)((code & 0x3f) | 0x80);
return 6;
}
throw runtime.newRangeError("pack(U): value out of range");
}
/** utf8_to_uv
*/
private static int utf8Decode(ByteBuffer buffer) {
int c = buffer.get() & 0xFF;
int uv = c;
int n;
if ((c & 0x80) == 0) {
return c;
}
if ((c & 0x40) == 0) {
throw new IllegalArgumentException("malformed UTF-8 character");
}
if ((uv & 0x20) == 0) { n = 2; uv &= 0x1f; }
else if ((uv & 0x10) == 0) { n = 3; uv &= 0x0f; }
else if ((uv & 0x08) == 0) { n = 4; uv &= 0x07; }
else if ((uv & 0x04) == 0) { n = 5; uv &= 0x03; }
else if ((uv & 0x02) == 0) { n = 6; uv &= 0x01; }
else {
throw new IllegalArgumentException("malformed UTF-8 character");
}
if (n > buffer.remaining() + 1) {
throw new IllegalArgumentException(
"malformed UTF-8 character (expected " + n + " bytes, "
+ "given " + (buffer.remaining() + 1) + " bytes)");
}
int limit = n - 1;
n--;
if (n != 0) {
while (n-- != 0) {
c = buffer.get() & 0xff;
if ((c & 0xc0) != 0x80) {
throw new IllegalArgumentException("malformed UTF-8 character");
}
else {
c &= 0x3f;
uv = uv << 6 | c;
}
}
}
if (uv < utf8_limits[limit]) {
throw new IllegalArgumentException("redundant UTF-8 sequence");
}
return uv;
}
private static final long utf8_limits[] = {
0x0, /* 1 */
0x80, /* 2 */
0x800, /* 3 */
0x10000, /* 4 */
0x200000, /* 5 */
0x4000000, /* 6 */
0x80000000, /* 7 */
};
private static int safeGet(ByteBuffer encode) {
while (encode.hasRemaining()) {
int got = encode.get() & 0xff;
if (got != 0) return got;
}
return 0;
}
private static int safeGetIgnoreNull(ByteBuffer encode) {
int next = 0;
while (encode.hasRemaining() && next == 0) {
next = safeGet(encode);
}
return next;
}
public static void decode(Ruby runtime, ByteBuffer encode, int occurrences,
RubyArray result, Converter converter) {
int lPadLength = 0;
if (occurrences == IS_STAR) {
occurrences = encode.remaining() / converter.size;
} else if (occurrences > encode.remaining() / converter.size) {
lPadLength = occurrences - encode.remaining() / converter.size;
occurrences = encode.remaining() / converter.size;
}
for (; occurrences-- > 0;) {
result.append(converter.decode(runtime, encode));
}
// MRI behavior: for 'Q', do not add trailing nils
if (converter != converters['Q']) {
for (; lPadLength-- > 0;)
result.append(runtime.getNil());
}
}
public static int encode(Ruby runtime, int occurrences, ByteList result,
RubyArray list, int index, ConverterExecutor converter) {
int listSize = list.size();
while (occurrences-- > 0) {
if (listSize-- <= 0 || index >= list.size()) {
throw runtime.newArgumentError(sTooFew);
}
IRubyObject from = list.eltInternal(index++);
converter.encode(runtime, from, result);
}
return index;
}
private abstract static class ConverterExecutor {
protected Converter converter;
public void setConverter(Converter converter) {
this.converter = converter;
}
public abstract IRubyObject decode(Ruby runtime, ByteBuffer format);
public abstract void encode(Ruby runtime, IRubyObject from, ByteList result);
}
private static ConverterExecutor executor18() {
return new ConverterExecutor() {
@Override
public IRubyObject decode(Ruby runtime, ByteBuffer format) {
return converter.decode(runtime, format);
}
@Override
public void encode(Ruby runtime, IRubyObject from, ByteList result) {
if (from == runtime.getNil() && converter.getType() != null) throw runtime.newTypeError(from, converter.getType());
converter.encode(runtime, from, result);
}
};
}
private static ConverterExecutor executor19() {
return new ConverterExecutor() {
@Override
public IRubyObject decode(Ruby runtime, ByteBuffer format) {
return converter.decode19(runtime, format);
}
@Override
public void encode(Ruby runtime, IRubyObject from, ByteList result) {
if (from == runtime.getNil() && converter.getType() != null) throw runtime.newTypeError(from, converter.getType());
converter.encode19(runtime, from, result);
}
};
}
public abstract static class Converter {
public int size;
public String type;
public Converter(int size) {
this(size, null);
}
public Converter(int size, String type) {
this.size = size;
this.type = type;
}
public String getType() {
return type;
}
public abstract IRubyObject decode(Ruby runtime, ByteBuffer format);
public abstract void encode(Ruby runtime, IRubyObject from, ByteList result);
public IRubyObject decode19(Ruby runtime, ByteBuffer format) {
return decode(runtime, format);
}
public void encode19(Ruby runtime, IRubyObject from, ByteList result) {
encode(runtime, from, result);
}
}
private abstract static class QuadConverter extends Converter{
public QuadConverter(int size, String type) {
super(size, type);
}
public QuadConverter(int size) {
super(size);
}
protected int overflowQuad(long quad) {
return (int) (quad & 0xffff);
}
protected void encodeShortByByteOrder(ByteList result, int s) {
if (Platform.BYTE_ORDER == Platform.BIG_ENDIAN) {
encodeShortBigEndian(result, s);
} else {
encodeShortLittleEndian(result, s);
}
}
protected void encodeLongByByteOrder(ByteList result, long l) {
if (Platform.BYTE_ORDER == Platform.BIG_ENDIAN) {
encodeLongBigEndian(result, l);
} else {
encodeLongLittleEndian(result, l);
}
}
}
/**
* shrinks a stringbuffer.
* shrinks a stringbuffer by a number of characters.
* @param i2Shrink the stringbuffer
* @param iLength how much to shrink
* @return the stringbuffer
**/
private static final ByteList shrink(ByteList i2Shrink, int iLength) {
iLength = i2Shrink.length() - iLength;
if (iLength < 0) {
throw new IllegalArgumentException();
}
i2Shrink.length(iLength);
return i2Shrink;
}
/**
* grows a stringbuffer.
* uses the Strings to pad the buffer for a certain length
* @param i2Grow the buffer to grow
* @param iPads the string used as padding
* @param iLength how much padding is needed
* @return the padded buffer
**/
private static final ByteList grow(ByteList i2Grow, byte[]iPads, int iLength) {
int lPadLength = iPads.length;
while (iLength >= lPadLength) {
i2Grow.append(iPads);
iLength -= lPadLength;
}
i2Grow.append(iPads, 0, iLength);
return i2Grow;
}
/**
* pack_pack
*
* Template characters for Array#pack Directive Meaning
*
*
*
* Directive
*
*
* Meaning
*
*
*
*
@
*
Moves to absolute position
*
*
*
A
*
ASCII string (space padded, count is width)
*
*
*
a
*
ASCII string (null padded, count is width)
*
*
*
B
*
Bit string (descending bit order)
*
*
*
b
*
Bit string (ascending bit order)
*
*
*
C
*
Unsigned char
*
*
*
c
*
Char
*
*
*
d
*
Double-precision float, native format
*
*
*
E
*
Double-precision float, little-endian byte order
*
*
*
e
*
Single-precision float, little-endian byte order
*
*
*
f
*
Single-precision float, native format
*
*
*
G
*
Double-precision float, network (big-endian) byte order
*
*
*
g
*
Single-precision float, network (big-endian) byte order
*
*
*
H
*
Hex string (high nibble first)
*
*
*
h
*
Hex string (low nibble first)
*
*
*
I
*
Unsigned integer
*
*
*
i
*
Integer
*
*
*
L
*
Unsigned long
*
*
*
l
*
Long
*
*
*
M
*
Quoted printable, MIME encoding (see RFC2045)
*
*
*
m
*
Base64 encoded string
*
*
*
N
*
Long, network (big-endian) byte order
*
*
*
n
*
Short, network (big-endian) byte-order
*
*
*
P
*
Pointer to a structure (fixed-length string)
*
*
*
p
*
Pointer to a null-terminated string
*
*
*
Q
*
Unsigned 64-bit number
*
*
*
q
*
64-bit number
*
*
*
S
*
Unsigned short
*
*
*
s
*
Short
*
*
*
U
*
UTF-8
*
*
*
u
*
UU-encoded string
*
*
*
V
*
Long, little-endian byte order
*
*
*
v
*
Short, little-endian byte order
*
*
*
X
*
Back up a byte
*
*
*
x
*
Null byte
*
*
*
Z
*
Same as ``A''
*
*
*
*
*
*
*
* Packs the contents of arr into a binary sequence according to the directives in
* aTemplateString (see preceding table).
* Directives ``A,'' ``a,'' and ``Z'' may be followed by a count, which gives the
* width of the resulting field.
* The remaining directives also may take a count, indicating the number of array
* elements to convert.
* If the count is an asterisk (``*''] = all remaining array elements will be
* converted.
* Any of the directives ``sSiIlL'' may be followed by an underscore (``_'') to use
* the underlying platform's native size for the specified type; otherwise, they
* use a platform-independent size. Spaces are ignored in the template string.
* @see RubyString#unpack
**/
@SuppressWarnings("fallthrough")
public static RubyString pack(Ruby runtime, RubyArray list, ByteList formatString, boolean taint) {
return packCommon(runtime, list, formatString, taint, executor18());
}
/**
* Same as pack(Ruby, RubyArray, ByteList) but defaults tainting of output to false.
*/
public static RubyString pack(Ruby runtime, RubyArray list, ByteList formatString) {
return packCommon(runtime, list, formatString, false, executor18());
}
@SuppressWarnings("fallthrough")
public static RubyString pack19(ThreadContext context, Ruby runtime, RubyArray list, RubyString formatString) {
RubyString pack = packCommon(runtime, list, formatString.getByteList(), formatString.isTaint(), executor19());
pack = (RubyString) pack.infectBy(formatString);
for (IRubyObject element : list.toJavaArray()) {
if (element.isUntrusted()) {
pack = (RubyString) pack.untrust(context);
break;
}
}
return pack;
}
private static RubyString packCommon(Ruby runtime, RubyArray list, ByteList formatString, boolean tainted, ConverterExecutor executor) {
ByteBuffer format = ByteBuffer.wrap(formatString.getUnsafeBytes(), formatString.begin(), formatString.length());
ByteList result = new ByteList();
boolean taintOutput = tainted;
int listSize = list.size();
int type = 0;
int next = safeGet(format);
int idx = 0;
ByteList lCurElemString;
int enc_info = 1;
mainLoop: while (next != 0) {
type = next;
next = safeGet(format);
if (PACK_IGNORE_NULL_CODES.indexOf(type) != -1 && next == 0) {
next = safeGetIgnoreNull(format);
}
// Skip all whitespace in pack format string
while (ASCII.isSpace(type)) {
if (next == 0) break mainLoop;
type = next;
next = safeGet(format);
}
// Skip embedded comments in pack format string
if (type == '#') {
while (type != '\n') {
if (next == 0) break mainLoop;
type = next;
next = safeGet(format);
}
}
if (next == '!' || next == '_') {
int index = NATIVE_CODES.indexOf(type);
if (index == -1) {
throw runtime.newArgumentError("'" + next +
"' allowed only after types " + NATIVE_CODES);
}
int typeBeforeMap = type;
type = MAPPED_CODES.charAt(index);
next = safeGet(format);
if (PACK_IGNORE_NULL_CODES_WITH_MODIFIERS.indexOf(typeBeforeMap) != -1 && next == 0) {
next = safeGetIgnoreNull(format);
}
}
if (next == '>' || next == '<') {
next = next == '>' ? BE : LE;
int index = ENDIANESS_CODES.indexOf(type + next);
if (index == -1) {
throw runtime.newArgumentError("'" + (char)next +
"' allowed only after types sSiIlLqQ");
}
type = ENDIANESS_CODES.charAt(index);
next = safeGet(format);
}
// Determine how many of type are needed (default: 1)
int occurrences = 1;
boolean isStar = false;
boolean ignoreStar = false;
if (next != 0) {
if (next == '*') {
if ("@XxumM".indexOf(type) != -1) {
occurrences = 0;
ignoreStar = true;
} else {
occurrences = list.size() - idx;
isStar = true;
}
next = safeGet(format);
} else if (ASCII.isDigit(next)) {
occurrences = 0;
do {
occurrences = occurrences * 10 + Character.digit((char)(next & 0xFF), 10);
next = safeGet(format);
} while (next != 0 && ASCII.isDigit(next));
}
}
if (runtime.is1_9()) {
switch (type) {
case 'U':
if (enc_info == 1) enc_info = 2;
break;
case 'm':
case 'M':
case 'u':
break;
default:
enc_info = 0;
break;
}
}
Converter converter = converters[type];
if (converter != null) {
executor.setConverter(converter);
idx = encode(runtime, occurrences, result, list, idx, executor);
continue;
}
switch (type) {
case '%' :
throw runtime.newArgumentError("% is not supported");
case 'A' :
case 'a' :
case 'Z' :
case 'B' :
case 'b' :
case 'H' :
case 'h' :
{
if (listSize-- <= 0) {
throw runtime.newArgumentError(sTooFew);
}
IRubyObject from = list.eltInternal(idx++);
if(from.isTaint()) taintOutput = true;
lCurElemString = from == runtime.getNil() ? ByteList.EMPTY_BYTELIST : from.convertToString().getByteList();
if (isStar) {
occurrences = lCurElemString.length();
// 'Z' adds extra null pad (versus 'a')
if (type == 'Z') occurrences++;
}
switch (type) {
case 'a' :
case 'A' :
case 'Z' :
if (lCurElemString.length() >= occurrences) {
result.append(lCurElemString.getUnsafeBytes(), lCurElemString.getBegin(), occurrences);
} else {//need padding
//I'm fairly sure there is a library call to create a
//string filled with a given char with a given length but I couldn't find it
result.append(lCurElemString);
occurrences -= lCurElemString.length();
switch (type) {
case 'a':
case 'Z':
grow(result, sNil10, occurrences);
break;
default:
grow(result, sSp10, occurrences);
break;
}
}
break;
case 'b' :
{
int currentByte = 0;
int padLength = 0;
if (occurrences > lCurElemString.length()) {
padLength = (occurrences - lCurElemString.length()) / 2 + (occurrences + lCurElemString.length()) % 2;
occurrences = lCurElemString.length();
}
for (int i = 0; i < occurrences;) {
if ((lCurElemString.charAt(i++) & 1) != 0) {//if the low bit is set
currentByte |= 128; //set the high bit of the result
}
if ((i & 7) == 0) {
result.append((byte) (currentByte & 0xff));
currentByte = 0;
continue;
}
//if the index is not a multiple of 8, we are not on a byte boundary
currentByte >>= 1; //shift the byte
}
if ((occurrences & 7) != 0) { //if the length is not a multiple of 8
currentByte >>= 7 - (occurrences & 7); //we need to pad the last byte
result.append((byte) (currentByte & 0xff));
}
//do some padding, I don't understand the padding strategy
result.length(result.length() + padLength);
}
break;
case 'B' :
{
int currentByte = 0;
int padLength = 0;
if (occurrences > lCurElemString.length()) {
padLength = (occurrences - lCurElemString.length()) / 2 + (occurrences + lCurElemString.length()) % 2;
occurrences = lCurElemString.length();
}
for (int i = 0; i < occurrences;) {
currentByte |= lCurElemString.charAt(i++) & 1;
// we filled up current byte; append it and create next one
if ((i & 7) == 0) {
result.append((byte) (currentByte & 0xff));
currentByte = 0;
continue;
}
//if the index is not a multiple of 8, we are not on a byte boundary
currentByte <<= 1;
}
if ((occurrences & 7) != 0) { //if the length is not a multiple of 8
currentByte <<= 7 - (occurrences & 7); //we need to pad the last byte
result.append((byte) (currentByte & 0xff));
}
result.length(result.length() + padLength);
}
break;
case 'h' :
{
int currentByte = 0;
int padLength = 0;
if (occurrences > lCurElemString.length()) {
padLength = occurrences - lCurElemString.length() + 1;
occurrences = lCurElemString.length();
}
for (int i = 0; i < occurrences;) {
byte currentChar = (byte)lCurElemString.charAt(i++);
if (Character.isJavaIdentifierStart(currentChar)) {
//this test may be too lax but it is the same as in MRI
currentByte |= (((currentChar & 15) + 9) & 15) << 4;
} else {
currentByte |= (currentChar & 15) << 4;
}
if ((i & 1) != 0) {
currentByte >>= 4;
} else {
result.append((byte) (currentByte & 0xff));
currentByte = 0;
}
}
if ((occurrences & 1) != 0) {
result.append((byte) (currentByte & 0xff));
if(padLength > 0) {
padLength--;
}
}
result.length(result.length() + padLength / 2);
}
break;
case 'H' :
{
int currentByte = 0;
int padLength = 0;
if (occurrences > lCurElemString.length()) {
padLength = occurrences - lCurElemString.length() + 1;
occurrences = lCurElemString.length();
}
for (int i = 0; i < occurrences;) {
byte currentChar = (byte)lCurElemString.charAt(i++);
if (Character.isJavaIdentifierStart(currentChar)) {
//this test may be too lax but it is the same as in MRI
currentByte |= ((currentChar & 15) + 9) & 15;
} else {
currentByte |= currentChar & 15;
}
if ((i & 1) != 0) {
currentByte <<= 4;
} else {
result.append((byte) (currentByte & 0xff));
currentByte = 0;
}
}
if ((occurrences & 1) != 0) {
result.append((byte) (currentByte & 0xff));
if(padLength > 0) {
padLength--;
}
}
result.length(result.length() + padLength / 2);
}
break;
}
break;
}
case 'x' :
grow(result, sNil10, occurrences);
break;
case 'X' :
try {
shrink(result, occurrences);
} catch (IllegalArgumentException e) {
throw runtime.newArgumentError("in `pack': X outside of string");
}
break;
case '@' :
occurrences -= result.length();
if (occurrences > 0) {
grow(result, sNil10, occurrences);
}
occurrences = -occurrences;
if (occurrences > 0) {
shrink(result, occurrences);
}
break;
case 'u' :
case 'm' : {
if (listSize-- <= 0) throw runtime.newArgumentError(sTooFew);
IRubyObject from = list.eltInternal(idx++);
if (from == runtime.getNil()) throw runtime.newTypeError(from, "Integer");
lCurElemString = from.convertToString().getByteList();
if (runtime.is1_9() && occurrences == 0 && type == 'm' && !ignoreStar) {
encodes(runtime, result, lCurElemString.getUnsafeBytes(),
lCurElemString.getBegin(), lCurElemString.length(),
lCurElemString.length(), (byte)type, false);
break;
}
occurrences = occurrences <= 2 ? 45 : occurrences / 3 * 3;
if (lCurElemString.length() == 0) break;
byte[] charsToEncode = lCurElemString.getUnsafeBytes();
for (int i = 0; i < lCurElemString.length(); i += occurrences) {
encodes(runtime, result, charsToEncode,
i + lCurElemString.getBegin(), lCurElemString.length() - i,
occurrences, (byte)type, true);
}
}
break;
case 'M' : {
if (listSize-- <= 0) throw runtime.newArgumentError(sTooFew);
IRubyObject from = list.eltInternal(idx++);
lCurElemString = from == runtime.getNil() ? ByteList.EMPTY_BYTELIST : from.asString().getByteList();
if (occurrences <= 1) {
occurrences = 72;
}
qpencode(result, lCurElemString, occurrences);
}
break;
case 'U' :
while (occurrences-- > 0) {
if (listSize-- <= 0) throw runtime.newArgumentError(sTooFew);
IRubyObject from = list.eltInternal(idx++);
int code = from == runtime.getNil() ? 0 : RubyNumeric.num2int(from);
if (code < 0) throw runtime.newRangeError("pack(U): value out of range");
result.ensure(result.getRealSize() + 6);
result.setRealSize(result.getRealSize() + utf8Decode(runtime, result.getUnsafeBytes(), result.getBegin() + result.getRealSize(), code));
}
break;
case 'w' :
while (occurrences-- > 0) {
if (listSize-- <= 0) throw runtime.newArgumentError(sTooFew);
ByteList buf = new ByteList();
IRubyObject from = list.eltInternal(idx++);
if (from.isNil()) throw runtime.newTypeError("pack('w') does not take nil");
if (from instanceof RubyBignum) {
RubyBignum big128 = RubyBignum.newBignum(runtime, 128);
while (from instanceof RubyBignum) {
RubyBignum bignum = (RubyBignum)from;
RubyArray ary = (RubyArray)bignum.divmod(runtime.getCurrentContext(), big128);
buf.append((byte)(RubyNumeric.fix2int(ary.at(RubyFixnum.one(runtime))) | 0x80) & 0xff);
from = ary.at(RubyFixnum.zero(runtime));
}
}
long l = RubyNumeric.num2long(from);
// we don't deal with negatives.
if (l >= 0) {
while(l != 0) {
buf.append((byte)(((l & 0x7f) | 0x80) & 0xff));
l >>= 7;
}
int left = 0;
int right = buf.getRealSize() - 1;
if (right >= 0) {
buf.getUnsafeBytes()[0] &= 0x7F;
} else {
buf.append(0);
}
while (left < right) {
byte tmp = buf.getUnsafeBytes()[left];
buf.getUnsafeBytes()[left] = buf.getUnsafeBytes()[right];
buf.getUnsafeBytes()[right] = tmp;
left++;
right--;
}
result.append(buf);
} else {
throw runtime.newArgumentError("can't compress negative numbers");
}
}
break;
}
}
RubyString output = runtime.newString(result);
if (taintOutput) output.taint(runtime.getCurrentContext());
if (runtime.is1_9()) {
switch (enc_info)
{
case 1:
output.setEncodingAndCodeRange(USASCII, RubyObject.USER8_F);
break;
case 2:
output.force_encoding(runtime.getCurrentContext(),
runtime.getEncodingService().convertEncodingToRubyEncoding(UTF8));
break;
default:
/* do nothing, keep ASCII-8BIT */
}
}
return output;
}
/**
* Retrieve an encoded int in little endian starting at index in the
* string value.
*
* @param encode string to get int from
* @return the decoded integer
*/
private static int decodeIntLittleEndian(ByteBuffer encode) {
encode.order(ByteOrder.LITTLE_ENDIAN);
int value = encode.getInt();
encode.order(ByteOrder.BIG_ENDIAN);
return value;
}
/**
* Retrieve an encoded int in little endian starting at index in the
* string value.
*
* @param encode string to get int from
* @return the decoded integer
*/
private static int decodeIntBigEndian(ByteBuffer encode) {
return encode.getInt();
}
/**
* Retrieve an encoded int in big endian starting at index in the string
* value.
*
* @param encode string to get int from
* @return the decoded integer
*/
private static long decodeIntUnsignedBigEndian(ByteBuffer encode) {
return (long)encode.getInt() & 0xFFFFFFFFL;
}
/**
* Retrieve an encoded int in little endian starting at index in the
* string value.
*
* @param encode the encoded string
* @return the decoded integer
*/
private static long decodeIntUnsignedLittleEndian(ByteBuffer encode) {
encode.order(ByteOrder.LITTLE_ENDIAN);
long value = encode.getInt() & 0xFFFFFFFFL;
encode.order(ByteOrder.BIG_ENDIAN);
return value;
}
/**
* Encode an int in little endian format into a packed representation.
*
* @param result to be appended to
* @param s the integer to encode
*/
private static void encodeIntLittleEndian(ByteList result, int s) {
result.append((byte) (s & 0xff)).append((byte) ((s >> 8) & 0xff));
result.append((byte) ((s>>16) & 0xff)).append((byte) ((s>>24) &0xff));
}
/**
* Encode an int in big-endian format into a packed representation.
*
* @param result to be appended to
* @param s the integer to encode
*/
private static void encodeIntBigEndian(ByteList result, int s) {
result.append((byte) ((s>>24) &0xff)).append((byte) ((s>>16) &0xff));
result.append((byte) ((s >> 8) & 0xff)).append((byte) (s & 0xff));
}
/**
* Decode a long in big-endian format from a packed value
*
* @param encode string to get int from
* @return the long value
*/
private static long decodeLongBigEndian(ByteBuffer encode) {
int c1 = decodeIntBigEndian(encode);
int c2 = decodeIntBigEndian(encode);
return ((long) c1 << 32) + (c2 & 0xffffffffL);
}
/**
* Decode a long in little-endian format from a packed value
*
* @param encode string to get int from
* @return the long value
*/
private static long decodeLongLittleEndian(ByteBuffer encode) {
int c1 = decodeIntLittleEndian(encode);
int c2 = decodeIntLittleEndian(encode);
return ((long) c2 << 32) + (c1 & 0xffffffffL);
}
/**
* Encode a long in little-endian format into a packed value
*
* @param result to pack long into
* @param l is the long to encode
*/
private static void encodeLongLittleEndian(ByteList result, long l) {
encodeIntLittleEndian(result, (int) (l & 0xffffffff));
encodeIntLittleEndian(result, (int) (l >>> 32));
}
/**
* Encode a long in big-endian format into a packed value
*
* @param result to pack long into
* @param l is the long to encode
*/
private static void encodeLongBigEndian(ByteList result, long l) {
encodeIntBigEndian(result, (int) (l >>> 32));
encodeIntBigEndian(result, (int) (l & 0xffffffff));
}
/**
* Decode a double from a packed value
*
* @param encode string to get int from
* @return the double value
*/
private static double decodeDoubleLittleEndian(ByteBuffer encode) {
return Double.longBitsToDouble(decodeLongLittleEndian(encode));
}
/**
* Decode a double in big-endian from a packed value
*
* @param encode string to get int from
* @return the double value
*/
private static double decodeDoubleBigEndian(ByteBuffer encode) {
return Double.longBitsToDouble(decodeLongBigEndian(encode));
}
/**
* Encode a double in little endian format into a packed value
*
* @param result to pack double into
* @param d is the double to encode
*/
private static void encodeDoubleLittleEndian(ByteList result, double d) {
encodeLongLittleEndian(result, Double.doubleToRawLongBits(d));
}
/**
* Encode a double in big-endian format into a packed value
*
* @param result to pack double into
* @param d is the double to encode
*/
private static void encodeDoubleBigEndian(ByteList result, double d) {
encodeLongBigEndian(result, Double.doubleToRawLongBits(d));
}
/**
* Decode a float in big-endian from a packed value
*
* @param encode string to get int from
* @return the double value
*/
private static float decodeFloatBigEndian(ByteBuffer encode) {
return Float.intBitsToFloat(decodeIntBigEndian(encode));
}
/**
* Decode a float in little-endian from a packed value
*
* @param encode string to get int from
* @return the double value
*/
private static float decodeFloatLittleEndian(ByteBuffer encode) {
return Float.intBitsToFloat(decodeIntLittleEndian(encode));
}
/**
* Encode a float in little endian format into a packed value
* @param result to pack float into
* @param f is the float to encode
*/
private static void encodeFloatLittleEndian(ByteList result, float f) {
encodeIntLittleEndian(result, Float.floatToRawIntBits(f));
}
/**
* Encode a float in big-endian format into a packed value
* @param result to pack float into
* @param f is the float to encode
*/
private static void encodeFloatBigEndian(ByteList result, float f) {
encodeIntBigEndian(result, Float.floatToRawIntBits(f));
}
/**
* Decode a short in little-endian from a packed value
*
* @param encode string to get int from
* @return the short value
*/
private static int decodeShortUnsignedLittleEndian(ByteBuffer encode) {
encode.order(ByteOrder.LITTLE_ENDIAN);
int value = encode.getShort() & 0xFFFF;
encode.order(ByteOrder.BIG_ENDIAN);
return value;
}
/**
* Decode a short in big-endian from a packed value
*
* @param encode string to get int from
* @return the short value
*/
private static int decodeShortUnsignedBigEndian(ByteBuffer encode) {
int value = encode.getShort() & 0xFFFF;
return value;
}
/**
* Decode a short in little-endian from a packed value
*
* @param encode string to get int from
* @return the short value
*/
private static int decodeShortLittleEndian(ByteBuffer encode) {
encode.order(ByteOrder.LITTLE_ENDIAN);
int value = encode.getShort();
encode.order(ByteOrder.BIG_ENDIAN);
return value;
}
/**
* Decode a short in big-endian from a packed value
*
* @param encode string to get int from
* @return the short value
*/
private static short decodeShortBigEndian(ByteBuffer encode) {
return encode.getShort();
}
/**
* Encode an short in little endian format into a packed representation.
*
* @param result to be appended to
* @param s the short to encode
*/
private static void encodeShortLittleEndian(ByteList result, int s) {
result.append((byte) (s & 0xff)).append((byte) ((s & 0xff00) >> 8));
}
/**
* Encode an shortin big-endian format into a packed representation.
*
* @param result to be appended to
* @param s the short to encode
*/
private static void encodeShortBigEndian(ByteList result, int s) {
result.append((byte) ((s & 0xff00) >> 8)).append((byte) (s & 0xff));
}
}