All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jruby.RubyClass Maven / Gradle / Ivy

There is a newer version: 9.4.9.0
Show newest version
/***** BEGIN LICENSE BLOCK *****
 * Version: EPL 1.0/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Common Public
 * License Version 1.0 (the "License"); you may not use this file
 * except in compliance with the License. You may obtain a copy of
 * the License at http://www.eclipse.org/legal/cpl-v10.html
 *
 * Software distributed under the License is distributed on an "AS
 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * rights and limitations under the License.
 *
 * Copyright (C) 2001-2004 Jan Arne Petersen 
 * Copyright (C) 2002-2004 Anders Bengtsson 
 * Copyright (C) 2004-2005 Thomas E Enebo 
 * Copyright (C) 2004 Stefan Matthias Aust 
 * 
 * Alternatively, the contents of this file may be used under the terms of
 * either of the GNU General Public License Version 2 or later (the "GPL"),
 * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the EPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the EPL, the GPL or the LGPL.
 ***** END LICENSE BLOCK *****/
package org.jruby;

import static org.jruby.util.CodegenUtils.ci;
import static org.jruby.util.CodegenUtils.p;
import static org.jruby.util.CodegenUtils.sig;
import static org.objectweb.asm.Opcodes.ACC_PRIVATE;
import static org.objectweb.asm.Opcodes.ACC_PUBLIC;
import static org.objectweb.asm.Opcodes.ACC_STATIC;
import static org.objectweb.asm.Opcodes.ACC_SUPER;
import static org.objectweb.asm.Opcodes.ACC_VARARGS;

import java.io.IOException;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.jruby.anno.JRubyClass;
import org.jruby.anno.JRubyMethod;
import org.jruby.compiler.impl.SkinnyMethodAdapter;
import org.jruby.exceptions.RaiseException;
import org.jruby.internal.runtime.methods.DynamicMethod;
import org.jruby.java.codegen.RealClassGenerator;
import org.jruby.java.codegen.Reified;
import org.jruby.javasupport.Java;
import org.jruby.javasupport.util.RuntimeHelpers;
import org.jruby.runtime.Block;
import org.jruby.runtime.CallSite;
import org.jruby.runtime.CallType;
import org.jruby.runtime.ClassIndex;
import org.jruby.runtime.MethodIndex;
import org.jruby.runtime.ObjectAllocator;
import org.jruby.runtime.ObjectMarshal;
import org.jruby.runtime.ThreadContext;
import static org.jruby.runtime.Visibility.*;
import static org.jruby.CompatVersion.*;
import org.jruby.runtime.builtin.IRubyObject;
import org.jruby.runtime.callsite.CacheEntry;
import org.jruby.runtime.marshal.MarshalStream;
import org.jruby.runtime.marshal.UnmarshalStream;
import org.jruby.runtime.opto.Invalidator;
import org.jruby.util.ClassCache.OneShotClassLoader;
import org.jruby.util.ClassDefiningClassLoader;
import org.jruby.util.CodegenUtils;
import org.jruby.util.JavaNameMangler;
import org.jruby.util.collections.WeakHashSet;
import org.jruby.util.log.Logger;
import org.jruby.util.log.LoggerFactory;
import org.objectweb.asm.AnnotationVisitor;
import org.objectweb.asm.ClassWriter;

/**
 *
 * @author  jpetersen
 */
@JRubyClass(name="Class", parent="Module")
public class RubyClass extends RubyModule {

    private static final Logger LOG = LoggerFactory.getLogger("RubyClass");

    public static void createClassClass(Ruby runtime, RubyClass classClass) {
        classClass.index = ClassIndex.CLASS;
        classClass.setReifiedClass(RubyClass.class);
        classClass.kindOf = new RubyModule.KindOf() {
            @Override
            public boolean isKindOf(IRubyObject obj, RubyModule type) {
                return obj instanceof RubyClass;
            }
        };
        
        classClass.undefineMethod("module_function");
        classClass.undefineMethod("append_features");
        classClass.undefineMethod("extend_object");
        
        classClass.defineAnnotatedMethods(RubyClass.class);
    }
    
    public static final ObjectAllocator CLASS_ALLOCATOR = new ObjectAllocator() {
        public IRubyObject allocate(Ruby runtime, RubyClass klass) {
            RubyClass clazz = new RubyClass(runtime);
            clazz.allocator = ObjectAllocator.NOT_ALLOCATABLE_ALLOCATOR; // Class.allocate object is not allocatable before it is initialized
            return clazz;
        }
    };

    public ObjectAllocator getAllocator() {
        return allocator;
    }

    public void setAllocator(ObjectAllocator allocator) {
        this.allocator = allocator;
    }

    /**
     * Set a reflective allocator that calls a no-arg constructor on the given
     * class.
     *
     * @param cls The class on which to call the default constructor to allocate
     */
    public void setClassAllocator(final Class cls) {
        this.allocator = new ObjectAllocator() {
            public IRubyObject allocate(Ruby runtime, RubyClass klazz) {
                try {
                    RubyBasicObject object = (RubyBasicObject)cls.newInstance();
                    object.setMetaClass(klazz);
                    return object;
                } catch (InstantiationException ie) {
                    throw runtime.newTypeError("could not allocate " + cls + " with default constructor:\n" + ie);
                } catch (IllegalAccessException iae) {
                    throw runtime.newSecurityError("could not allocate " + cls + " due to inaccessible default constructor:\n" + iae);
                }
            }
        };
        
        this.reifiedClass = cls;
    }

    /**
     * Set a reflective allocator that calls the "standard" Ruby object
     * constructor (Ruby, RubyClass) on the given class.
     *
     * @param cls The class from which to grab a standard Ruby constructor
     */
    public void setRubyClassAllocator(final Class cls) {
        try {
            final Constructor constructor = cls.getConstructor(Ruby.class, RubyClass.class);
            
            this.allocator = new ObjectAllocator() {
                public IRubyObject allocate(Ruby runtime, RubyClass klazz) {
                    try {
                        return (IRubyObject)constructor.newInstance(runtime, klazz);
                    } catch (InvocationTargetException ite) {
                        throw runtime.newTypeError("could not allocate " + cls + " with (Ruby, RubyClass) constructor:\n" + ite);
                    } catch (InstantiationException ie) {
                        throw runtime.newTypeError("could not allocate " + cls + " with (Ruby, RubyClass) constructor:\n" + ie);
                    } catch (IllegalAccessException iae) {
                        throw runtime.newSecurityError("could not allocate " + cls + " due to inaccessible (Ruby, RubyClass) constructor:\n" + iae);
                    }
                }
            };

            this.reifiedClass = cls;
        } catch (NoSuchMethodException nsme) {
            throw new RuntimeException(nsme);
        }
    }

    /**
     * Set a reflective allocator that calls the "standard" Ruby object
     * constructor (Ruby, RubyClass) on the given class via a static
     * __allocate__ method intermediate.
     *
     * @param cls The class from which to grab a standard Ruby __allocate__
     *            method.
     */
    public void setRubyStaticAllocator(final Class cls) {
        try {
            final Method method = cls.getDeclaredMethod("__allocate__", Ruby.class, RubyClass.class);

            this.allocator = new ObjectAllocator() {
                public IRubyObject allocate(Ruby runtime, RubyClass klazz) {
                    try {
                        return (IRubyObject)method.invoke(null, runtime, klazz);
                    } catch (InvocationTargetException ite) {
                        throw runtime.newTypeError("could not allocate " + cls + " with (Ruby, RubyClass) constructor:\n" + ite);
                    } catch (IllegalAccessException iae) {
                        throw runtime.newSecurityError("could not allocate " + cls + " due to inaccessible (Ruby, RubyClass) constructor:\n" + iae);
                    }
                }
            };

            this.reifiedClass = cls;
        } catch (NoSuchMethodException nsme) {
            throw new RuntimeException(nsme);
        }
    }

    @JRubyMethod(name = "allocate")
    public IRubyObject allocate() {
        if (superClass == null) {
            if(!(runtime.is1_9() && this == runtime.getBasicObject())) {
                throw runtime.newTypeError("can't instantiate uninitialized class");
            }
        }
        IRubyObject obj = allocator.allocate(runtime, this);
        if (obj.getMetaClass().getRealClass() != getRealClass()) {
            throw runtime.newTypeError("wrong instance allocation");
        }
        return obj;
    }

    public CallSite getBaseCallSite(int idx) {
        return baseCallSites[idx];
    }

    public CallSite[] getBaseCallSites() {
        return baseCallSites;
    }
    
    public CallSite[] getExtraCallSites() {
        return extraCallSites;
    }

    public static class VariableAccessor {
        private final String name;
        private final int index;
        private final int classId;
        public VariableAccessor(String name, int index, int classId) {
            this.index = index;
            this.classId = classId;
            this.name = name;
        }
        public int getClassId() {
            return classId;
        }
        public int getIndex() {
            return index;
        }
        public String getName() {
            return name;
        }
        public Object get(Object object) {
            return ((IRubyObject)object).getVariable(index);
        }
        public void set(Object object, Object value) {
            ((IRubyObject)object).setVariable(index, value);
        }
        public static final VariableAccessor DUMMY_ACCESSOR = new VariableAccessor(null, -1, -1);
    }

    public Map getVariableAccessorsForRead() {
        return variableAccessors;
    }
    
    private final VariableAccessorField objectIdVariableAccessorField = new VariableAccessorField("object_id");
    private final VariableAccessorField cextHandleVariableAccessorField = new VariableAccessorField("cext");
    private final VariableAccessorField ffiHandleVariableAccessorField = new VariableAccessorField("ffi");
    private final VariableAccessorField objectGroupVariableAccessorField = new VariableAccessorField("objectspace_group");

    private synchronized final VariableAccessor allocateVariableAccessor(String name) {
        String[] myVariableNames = variableNames;

        int newIndex = myVariableNames.length;
        String[] newVariableNames = new String[newIndex + 1];

        VariableAccessor newVariableAccessor = new VariableAccessor(name, newIndex, this.id);

        System.arraycopy(myVariableNames, 0, newVariableNames, 0, newIndex);

        newVariableNames[newIndex] = name;
        variableNames = newVariableNames;

        return newVariableAccessor;
    }

    public VariableAccessor getVariableAccessorForWrite(String name) {
        VariableAccessor ivarAccessor = variableAccessors.get(name);
        if (ivarAccessor == null) {

            synchronized (this) {
                Map myVariableAccessors = variableAccessors;
                ivarAccessor = myVariableAccessors.get(name);

                if (ivarAccessor == null) {
                    // allocate a new accessor and populate a new table
                    ivarAccessor = allocateVariableAccessor(name);
                    Map newVariableAccessors = new HashMap(myVariableAccessors.size() + 1);

                    newVariableAccessors.putAll(myVariableAccessors);
                    newVariableAccessors.put(name, ivarAccessor);

                    variableAccessors = newVariableAccessors;
                }
            }
        }
        return ivarAccessor;
    }

    public final class VariableAccessorField {
        private final String name;
        private volatile VariableAccessor variableAccessor = VariableAccessor.DUMMY_ACCESSOR;

        private VariableAccessorField(String name) {
            this.name = name;
        }

        public VariableAccessor getVariableAccessorForRead() {
            return variableAccessor;
        }

        public VariableAccessor getVariableAccessorForWrite() {
            return variableAccessor != VariableAccessor.DUMMY_ACCESSOR
                    ? variableAccessor : allocateVariableAccessor();
        }

        private synchronized VariableAccessor allocateVariableAccessor() {
            if (variableAccessor == VariableAccessor.DUMMY_ACCESSOR) {
                variableAccessor = RubyClass.this.allocateVariableAccessor(name);
            }

            return variableAccessor;
        }
    }

    public VariableAccessor getVariableAccessorForRead(String name) {
        VariableAccessor accessor = getVariableAccessorsForRead().get(name);
        if (accessor == null) accessor = VariableAccessor.DUMMY_ACCESSOR;
        return accessor;
    }

    public VariableAccessorField getObjectIdAccessorField() {
        return objectIdVariableAccessorField;
    }

    public VariableAccessorField getNativeHandleAccessorField() {
        return cextHandleVariableAccessorField;
    }

    public VariableAccessorField getFFIHandleAccessorField() {
        return ffiHandleVariableAccessorField;
    }

    public VariableAccessorField getObjectGroupAccessorField() {
        return objectGroupVariableAccessorField;
    }

    public int getVariableTableSize() {
        return variableAccessors.size();
    }

    public int getVariableTableSizeWithExtras() {
        return variableNames.length;
    }

    public Map getVariableTableCopy() {
        return new HashMap(getVariableAccessorsForRead());
    }

    /**
     * Get an array of all the known instance variable names. The offset into
     * the array indicates the offset of the variable's value in the per-object
     * variable array.
     *
     * @return a copy of the array of known instance variable names
     */
    public String[] getVariableNames() {
        String[] original = variableNames;
        String[] copy = new String[original.length];
        System.arraycopy(original, 0, copy, 0, original.length);
        return copy;
    }

    @Override
    public int getNativeTypeIndex() {
        return ClassIndex.CLASS;
    }
    
    @Override
    public boolean isModule() {
        return false;
    }

    @Override
    public boolean isClass() {
        return true;
    }

    @Override
    public boolean isSingleton() {
        return false;
    }

    /** boot_defclass
     * Create an initial Object meta class before Module and Kernel dependencies have
     * squirreled themselves together.
     * 
     * @param runtime we need it
     * @return a half-baked meta class for object
     */
    public static RubyClass createBootstrapClass(Ruby runtime, String name, RubyClass superClass, ObjectAllocator allocator) {
        RubyClass obj;

        if (superClass == null ) {  // boot the Object class 
            obj = new RubyClass(runtime);
            obj.marshal = DEFAULT_OBJECT_MARSHAL;
        } else {                    // boot the Module and Class classes
            obj = new RubyClass(runtime, superClass);
        }
        obj.setAllocator(allocator);
        obj.setBaseName(name);
        return obj;
    }

    /** separate path for MetaClass and IncludedModuleWrapper construction
     *  (rb_class_boot version for MetaClasses)
     *  no marshal, allocator initialization and addSubclass(this) here!
     */
    protected RubyClass(Ruby runtime, RubyClass superClass, boolean objectSpace) {
        super(runtime, runtime.getClassClass(), objectSpace);
        this.runtime = runtime;
        this.realClass = superClass == null ? null : superClass.getRealClass();
        setSuperClass(superClass); // this is the only case it might be null here (in MetaClass construction)
    }
    
    /** used by CLASS_ALLOCATOR (any Class' class will be a Class!)
     *  also used to bootstrap Object class
     */
    protected RubyClass(Ruby runtime) {
        super(runtime, runtime.getClassClass());
        this.runtime = runtime;
        this.realClass = this;
        index = ClassIndex.CLASS;
    }
    
    /** rb_class_boot (for plain Classes)
     *  also used to bootstrap Module and Class classes 
     */
    protected RubyClass(Ruby runtime, RubyClass superClazz) {
        this(runtime);
        setSuperClass(superClazz);
        marshal = superClazz.marshal; // use parent's marshal
        superClazz.addSubclass(this);
        allocator = superClazz.allocator;
        
        infectBy(superClass);        
    }
    
    /** 
     * A constructor which allows passing in an array of supplementary call sites.
     */
    protected RubyClass(Ruby runtime, RubyClass superClazz, CallSite[] extraCallSites) {
        this(runtime);
        setSuperClass(superClazz);
        this.marshal = superClazz.marshal; // use parent's marshal
        superClazz.addSubclass(this);
        
        this.extraCallSites = extraCallSites;
        
        infectBy(superClass);        
    }

    /** 
     * Construct a new class with the given name scoped under Object (global)
     * and with Object as its immediate superclass.
     * Corresponds to rb_class_new in MRI.
     */
    public static RubyClass newClass(Ruby runtime, RubyClass superClass) {
        if (superClass == runtime.getClassClass()) throw runtime.newTypeError("can't make subclass of Class");
        if (superClass.isSingleton()) throw runtime.newTypeError("can't make subclass of virtual class");
        return new RubyClass(runtime, superClass);        
    }

    /** 
     * A variation on newClass that allow passing in an array of supplementary
     * call sites to improve dynamic invocation.
     */
    public static RubyClass newClass(Ruby runtime, RubyClass superClass, CallSite[] extraCallSites) {
        if (superClass == runtime.getClassClass()) throw runtime.newTypeError("can't make subclass of Class");
        if (superClass.isSingleton()) throw runtime.newTypeError("can't make subclass of virtual class");
        return new RubyClass(runtime, superClass, extraCallSites);        
    }

    /** 
     * Construct a new class with the given name, allocator, parent class,
     * and containing class. If setParent is true, the class's parent will be
     * explicitly set to the provided parent (rather than the new class just
     * being assigned to a constant in that parent).
     * Corresponds to rb_class_new/rb_define_class_id/rb_name_class/rb_set_class_path
     * in MRI.
     */
    public static RubyClass newClass(Ruby runtime, RubyClass superClass, String name, ObjectAllocator allocator, RubyModule parent, boolean setParent) {
        RubyClass clazz = newClass(runtime, superClass);
        clazz.setBaseName(name);
        clazz.setAllocator(allocator);
        clazz.makeMetaClass(superClass.getMetaClass());
        if (setParent) clazz.setParent(parent);
        parent.setConstant(name, clazz);
        clazz.inherit(superClass);
        return clazz;
    }

    /** 
     * A variation on newClass that allows passing in an array of supplementary
     * call sites to improve dynamic invocation performance.
     */
    public static RubyClass newClass(Ruby runtime, RubyClass superClass, String name, ObjectAllocator allocator, RubyModule parent, boolean setParent, CallSite[] extraCallSites) {
        RubyClass clazz = newClass(runtime, superClass, extraCallSites);
        clazz.setBaseName(name);
        clazz.setAllocator(allocator);
        clazz.makeMetaClass(superClass.getMetaClass());
        if (setParent) clazz.setParent(parent);
        parent.setConstant(name, clazz);
        clazz.inherit(superClass);
        return clazz;
    }

    /** rb_make_metaclass
     *
     */
    @Override
    public RubyClass makeMetaClass(RubyClass superClass) {
        if (isSingleton()) { // could be pulled down to RubyClass in future
            MetaClass klass = new MetaClass(runtime, superClass, this); // rb_class_boot
            setMetaClass(klass);

            klass.setMetaClass(klass);
            klass.setSuperClass(getSuperClass().getRealClass().getMetaClass());
            
            return klass;
        } else {
            return super.makeMetaClass(superClass);
        }
    }
    
    @Deprecated
    public IRubyObject invoke(ThreadContext context, IRubyObject self, int methodIndex, String name, IRubyObject[] args, CallType callType, Block block) {
        return invoke(context, self, name, args, callType, block);
    }
    
    public boolean notVisibleAndNotMethodMissing(DynamicMethod method, String name, IRubyObject caller, CallType callType) {
        return !method.isCallableFrom(caller, callType) && !name.equals("method_missing");
    }
    
    public IRubyObject invoke(ThreadContext context, IRubyObject self, String name,
            CallType callType, Block block) {
        DynamicMethod method = searchMethod(name);
        IRubyObject caller = context.getFrameSelf();
        if (shouldCallMethodMissing(method, name, caller, callType)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, callType, block);
        }
        return method.call(context, self, this, name, block);
    }
    
    public IRubyObject finvoke(ThreadContext context, IRubyObject self, String name, Block block) {
        DynamicMethod method = searchMethod(name);
        if (shouldCallMethodMissing(method)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, CallType.FUNCTIONAL, block);
        }
        return method.call(context, self, this, name, block);
    }
    
    public IRubyObject invoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject[] args, CallType callType, Block block) {
        assert args != null;
        DynamicMethod method = searchMethod(name);
        IRubyObject caller = context.getFrameSelf();
        if (shouldCallMethodMissing(method, name, caller, callType)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, callType, args, block);
        }
        return method.call(context, self, this, name, args, block);
    }
    
    public IRubyObject finvoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject[] args, Block block) {
        assert args != null;
        DynamicMethod method = searchMethod(name);
        if (shouldCallMethodMissing(method)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, CallType.FUNCTIONAL, args, block);
        }
        return method.call(context, self, this, name, args, block);
    }
    
    public IRubyObject invoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg, CallType callType, Block block) {
        DynamicMethod method = searchMethod(name);
        IRubyObject caller = context.getFrameSelf();
        if (shouldCallMethodMissing(method, name, caller, callType)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, callType, arg, block);
        }
        return method.call(context, self, this, name, arg, block);
    }
    
    public IRubyObject finvoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg, Block block) {
        DynamicMethod method = searchMethod(name);
        if (shouldCallMethodMissing(method)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, CallType.FUNCTIONAL, arg, block);
        }
        return method.call(context, self, this, name, arg, block);
    }
    
    public IRubyObject invoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg0, IRubyObject arg1, CallType callType, Block block) {
        DynamicMethod method = searchMethod(name);
        IRubyObject caller = context.getFrameSelf();
        if (shouldCallMethodMissing(method, name, caller, callType)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, callType, arg0, arg1, block);
        }
        return method.call(context, self, this, name, arg0, arg1, block);
    }
    
    public IRubyObject finvoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg0, IRubyObject arg1, Block block) {
        DynamicMethod method = searchMethod(name);
        if (shouldCallMethodMissing(method)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, CallType.FUNCTIONAL, arg0, arg1, block);
        }
        return method.call(context, self, this, name, arg0, arg1, block);
    }
    
    public IRubyObject invoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg0, IRubyObject arg1, IRubyObject arg2, CallType callType, Block block) {
        DynamicMethod method = searchMethod(name);
        IRubyObject caller = context.getFrameSelf();
        if (shouldCallMethodMissing(method, name, caller, callType)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, callType, arg0, arg1, arg2, block);
        }
        return method.call(context, self, this, name, arg0, arg1, arg2, block);
    }
    
    public IRubyObject finvoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg0, IRubyObject arg1, IRubyObject arg2, Block block) {
        DynamicMethod method = searchMethod(name);
        if (shouldCallMethodMissing(method)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, CallType.FUNCTIONAL, arg0, arg1, arg2, block);
        }
        return method.call(context, self, this, name, arg0, arg1, arg2, block);
    }
    
    public IRubyObject invoke(ThreadContext context, IRubyObject self, String name,
            CallType callType) {
        DynamicMethod method = searchMethod(name);
        IRubyObject caller = context.getFrameSelf();
        if (shouldCallMethodMissing(method, name, caller, callType)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, callType, Block.NULL_BLOCK);
        }
        return method.call(context, self, this, name);
    }
    
    public IRubyObject finvoke(ThreadContext context, IRubyObject self, String name) {
        DynamicMethod method = searchMethod(name);
        if (shouldCallMethodMissing(method)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, CallType.FUNCTIONAL, Block.NULL_BLOCK);
        }
        return method.call(context, self, this, name);
    }

    public IRubyObject finvokeChecked(ThreadContext context, IRubyObject self, String name) {
        DynamicMethod method = searchMethod(name);
        if(method.isUndefined()) {
            DynamicMethod methodMissing = searchMethod("method_missing");
            if(methodMissing.isUndefined() || methodMissing.equals(context.runtime.getDefaultMethodMissing())) {
                return null;
            }

            try {
                return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, CallType.FUNCTIONAL, Block.NULL_BLOCK);
            } catch(RaiseException e) {
                if(context.runtime.getNoMethodError().isInstance(e.getException())) {
                    if(self.respondsTo(name)) {
                        throw e;
                    } else {
                        // we swallow, so we also must clear $!
                        context.setErrorInfo(context.nil);
                        return null;
                    }
                } else {
                    throw e;
                }
            }
        }
        return method.call(context, self, this, name);
    }
    
    public IRubyObject invoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject[] args, CallType callType) {
        assert args != null;
        DynamicMethod method = searchMethod(name);
        IRubyObject caller = context.getFrameSelf();
        if (shouldCallMethodMissing(method, name, caller, callType)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, callType, args, Block.NULL_BLOCK);
        }
        return method.call(context, self, this, name, args);
    }
    
    public IRubyObject finvoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject[] args) {
        assert args != null;
        DynamicMethod method = searchMethod(name);
        if (shouldCallMethodMissing(method)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, CallType.FUNCTIONAL, args, Block.NULL_BLOCK);
        }
        return method.call(context, self, this, name, args);
    }
    
    public IRubyObject invoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg, CallType callType) {
        DynamicMethod method = searchMethod(name);
        IRubyObject caller = context.getFrameSelf();
        if (shouldCallMethodMissing(method, name, caller, callType)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, callType, arg, Block.NULL_BLOCK);
        }
        return method.call(context, self, this, name, arg);
    }
    
    public IRubyObject finvoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg) {
        DynamicMethod method = searchMethod(name);
        if (shouldCallMethodMissing(method)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, CallType.FUNCTIONAL, arg, Block.NULL_BLOCK);
        }
        return method.call(context, self, this, name, arg);
    }
    
    public IRubyObject invoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg0, IRubyObject arg1, CallType callType) {
        DynamicMethod method = searchMethod(name);
        IRubyObject caller = context.getFrameSelf();
        if (shouldCallMethodMissing(method, name, caller, callType)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, callType, arg0, arg1, Block.NULL_BLOCK);
        }
        return method.call(context, self, this, name, arg0, arg1);
    }
    
    public IRubyObject finvoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg0, IRubyObject arg1) {
        DynamicMethod method = searchMethod(name);
        if (shouldCallMethodMissing(method)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, CallType.FUNCTIONAL, arg0, arg1, Block.NULL_BLOCK);
        }
        return method.call(context, self, this, name, arg0, arg1);
    }
    
    public IRubyObject invoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg0, IRubyObject arg1, IRubyObject arg2, CallType callType) {
        DynamicMethod method = searchMethod(name);
        IRubyObject caller = context.getFrameSelf();
        if (shouldCallMethodMissing(method, name, caller, callType)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, callType, arg0, arg1, arg2, Block.NULL_BLOCK);
        }
        return method.call(context, self, this, name, arg0, arg1, arg2);
    }
    
    public IRubyObject finvoke(ThreadContext context, IRubyObject self, String name,
            IRubyObject arg0, IRubyObject arg1, IRubyObject arg2) {
        DynamicMethod method = searchMethod(name);
        if (shouldCallMethodMissing(method)) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), name, CallType.FUNCTIONAL, arg0, arg1, arg2, Block.NULL_BLOCK);
        }
        return method.call(context, self, this, name, arg0, arg1, arg2);
    }

    private void dumpReifiedClass(String dumpDir, String javaPath, byte[] classBytes) {
        if (dumpDir != null) {
            if (dumpDir.equals("")) {
                dumpDir = ".";
            }
            java.io.FileOutputStream classStream = null;
            try {
                java.io.File classFile = new java.io.File(dumpDir, javaPath + ".class");
                classFile.getParentFile().mkdirs();
                classStream = new java.io.FileOutputStream(classFile);
                classStream.write(classBytes);
            } catch (IOException io) {
                getRuntime().getWarnings().warn("unable to dump class file: " + io.getMessage());
            } finally {
                if (classStream != null) {
                    try {
                        classStream.close();
                    } catch (IOException ignored) {
                    }
                }
            }
        }
    }

    private void generateMethodAnnotations(Map> methodAnnos, SkinnyMethodAdapter m, List>> parameterAnnos) {
        if (methodAnnos != null && methodAnnos.size() != 0) {
            for (Map.Entry> entry : methodAnnos.entrySet()) {
                m.visitAnnotationWithFields(ci(entry.getKey()), true, entry.getValue());
            }
        }
        if (parameterAnnos != null && parameterAnnos.size() != 0) {
            for (int i = 0; i < parameterAnnos.size(); i++) {
                Map> annos = parameterAnnos.get(i);
                if (annos != null && annos.size() != 0) {
                    for (Iterator>> it = annos.entrySet().iterator(); it.hasNext();) {
                        Map.Entry> entry = it.next();
                        m.visitParameterAnnotationWithFields(i, ci(entry.getKey()), true, entry.getValue());
                    }
                }
            }
        }
    }
    
    private boolean shouldCallMethodMissing(DynamicMethod method) {
        return method.isUndefined();
    }
    private boolean shouldCallMethodMissing(DynamicMethod method, String name, IRubyObject caller, CallType callType) {
        return method.isUndefined() || notVisibleAndNotMethodMissing(method, name, caller, callType);
    }
    
    public IRubyObject invokeInherited(ThreadContext context, IRubyObject self, IRubyObject subclass) {
        DynamicMethod method = getMetaClass().searchMethod("inherited");

        if (method.isUndefined()) {
            return RuntimeHelpers.callMethodMissing(context, self, method.getVisibility(), "inherited", CallType.FUNCTIONAL, Block.NULL_BLOCK);
        }

        return method.call(context, self, getMetaClass(), "inherited", subclass, Block.NULL_BLOCK);
    }

    /** rb_class_new_instance
    *
    */
    @JRubyMethod(name = "new", omit = true)
    public IRubyObject newInstance(ThreadContext context, Block block) {
        IRubyObject obj = allocate();
        baseCallSites[CS_IDX_INITIALIZE].call(context, obj, obj, block);
        return obj;
    }

    @JRubyMethod(name = "new", omit = true)
    public IRubyObject newInstance(ThreadContext context, IRubyObject arg0, Block block) {
        IRubyObject obj = allocate();
        baseCallSites[CS_IDX_INITIALIZE].call(context, obj, obj, arg0, block);
        return obj;
    }

    @JRubyMethod(name = "new", omit = true)
    public IRubyObject newInstance(ThreadContext context, IRubyObject arg0, IRubyObject arg1, Block block) {
        IRubyObject obj = allocate();
        baseCallSites[CS_IDX_INITIALIZE].call(context, obj, obj, arg0, arg1, block);
        return obj;
    }

    @JRubyMethod(name = "new", omit = true)
    public IRubyObject newInstance(ThreadContext context, IRubyObject arg0, IRubyObject arg1, IRubyObject arg2, Block block) {
        IRubyObject obj = allocate();
        baseCallSites[CS_IDX_INITIALIZE].call(context, obj, obj, arg0, arg1, arg2, block);
        return obj;
    }

    @JRubyMethod(name = "new", rest = true, omit = true)
    public IRubyObject newInstance(ThreadContext context, IRubyObject[] args, Block block) {
        IRubyObject obj = allocate();
        baseCallSites[CS_IDX_INITIALIZE].call(context, obj, obj, args, block);
        return obj;
    }

    /** rb_class_initialize
     * 
     */
    @JRubyMethod(compat = RUBY1_8, visibility = PRIVATE)
    @Override
    public IRubyObject initialize(ThreadContext context, Block block) {
        checkNotInitialized();
        return initializeCommon(context, runtime.getObject(), block, false);
    }
        
    @JRubyMethod(compat = RUBY1_8, visibility = PRIVATE)
    public IRubyObject initialize(ThreadContext context, IRubyObject superObject, Block block) {
        checkNotInitialized();
        checkInheritable(superObject);
        return initializeCommon(context, (RubyClass)superObject, block, false);
    }
        
    @JRubyMethod(name = "initialize", compat = RUBY1_9, visibility = PRIVATE)
    public IRubyObject initialize19(ThreadContext context, Block block) {
        checkNotInitialized();
        return initializeCommon(context, runtime.getObject(), block, true);
    }
        
    @JRubyMethod(name = "initialize", compat = RUBY1_9, visibility = PRIVATE)
    public IRubyObject initialize19(ThreadContext context, IRubyObject superObject, Block block) {
        checkNotInitialized();
        checkInheritable(superObject);
        return initializeCommon(context, (RubyClass)superObject, block, true);
    }

    private IRubyObject initializeCommon(ThreadContext context, RubyClass superClazz, Block block, boolean ruby1_9 /*callInheritBeforeSuper*/) {
        setSuperClass(superClazz);
        allocator = superClazz.allocator;
        makeMetaClass(superClazz.getMetaClass());

        marshal = superClazz.marshal;

        superClazz.addSubclass(this);

        if (ruby1_9) {
            inherit(superClazz);
            super.initialize(context, block);
        } else {
            super.initialize(context, block);
            inherit(superClazz);
        }

        return this;
    }

    /** rb_class_init_copy
     * 
     */
    @JRubyMethod(name = "initialize_copy", required = 1, visibility = PRIVATE)
    @Override
    public IRubyObject initialize_copy(IRubyObject original){
        checkNotInitialized();
        if (original instanceof MetaClass) throw runtime.newTypeError("can't copy singleton class");        
        
        super.initialize_copy(original);
        allocator = ((RubyClass)original).allocator; 
        return this;        
    }

    protected void setModuleSuperClass(RubyClass superClass) {
        // remove us from old superclass's child classes
        if (this.superClass != null) this.superClass.removeSubclass(this);
        // add us to new superclass's child classes
        superClass.addSubclass(this);
        // update superclass reference
        setSuperClass(superClass);
    }
    
    public Collection subclasses(boolean includeDescendants) {
        Set mySubclasses = subclasses;
        if (mySubclasses != null) {
            Collection mine = new ArrayList(mySubclasses);
            if (includeDescendants) {
                for (RubyClass i: mySubclasses) {
                    mine.addAll(i.subclasses(includeDescendants));
                }
            }

            return mine;
        } else {
            return Collections.EMPTY_LIST;
        }
    }

    /**
     * Add a new subclass to the weak set of subclasses.
     *
     * This version always constructs a new set to avoid having to synchronize
     * against the set when iterating it for invalidation in
     * invalidateCacheDescendants.
     *
     * @param subclass The subclass to add
     */
    public synchronized void addSubclass(RubyClass subclass) {
        synchronized (runtime.getHierarchyLock()) {
            Set oldSubclasses = subclasses;
            if (oldSubclasses == null) subclasses = oldSubclasses = new WeakHashSet(4);
            oldSubclasses.add(subclass);
        }
    }
    
    /**
     * Remove a subclass from the weak set of subclasses.
     *
     * @param subclass The subclass to remove
     */
    public synchronized void removeSubclass(RubyClass subclass) {
        synchronized (runtime.getHierarchyLock()) {
            Set oldSubclasses = subclasses;
            if (oldSubclasses == null) return;

            oldSubclasses.remove(subclass);
        }
    }

    /**
     * Replace an existing subclass with a new one.
     *
     * @param subclass The subclass to remove
     * @param newSubclass The subclass to replace it with
     */
    public synchronized void replaceSubclass(RubyClass subclass, RubyClass newSubclass) {
        synchronized (runtime.getHierarchyLock()) {
            Set oldSubclasses = subclasses;
            if (oldSubclasses == null) return;

            oldSubclasses.remove(subclass);
            oldSubclasses.add(newSubclass);
        }
    }

    public void becomeSynchronized() {
        // make this class and all subclasses sync
        synchronized (getRuntime().getHierarchyLock()) {
            super.becomeSynchronized();
            Set mySubclasses = subclasses;
            if (mySubclasses != null) for (RubyClass subclass : mySubclasses) {
                subclass.becomeSynchronized();
            }
        }
    }

    /**
     * Invalidate all subclasses of this class by walking the set of all
     * subclasses and asking them to invalidate themselves.
     *
     * Note that this version works against a reference to the current set of
     * subclasses, which could be replaced by the time this iteration is
     * complete. In theory, there may be a path by which invalidation would
     * miss a class added during the invalidation process, but the exposure is
     * minimal if it exists at all. The only way to prevent it would be to
     * synchronize both invalidation and subclass set modification against a
     * global lock, which we would like to avoid.
     */
    @Override
    public void invalidateCacheDescendants() {
        super.invalidateCacheDescendants();

        synchronized (runtime.getHierarchyLock()) {
            Set mySubclasses = subclasses;
            if (mySubclasses != null) for (RubyClass subclass : mySubclasses) {
                subclass.invalidateCacheDescendants();
            }
        }
    }
    
    public void addInvalidatorsAndFlush(List invalidators) {
        // add this class's invalidators to the aggregate
        invalidators.add(methodInvalidator);
        
        // if we're not at boot time, don't bother fully clearing caches
        if (!runtime.isBooting()) cachedMethods.clear();

        // no subclasses, don't bother with lock and iteration
        if (subclasses == null || subclasses.isEmpty()) return;
        
        // cascade into subclasses
        synchronized (runtime.getHierarchyLock()) {
            Set mySubclasses = subclasses;
            if (mySubclasses != null) for (RubyClass subclass : mySubclasses) {
                subclass.addInvalidatorsAndFlush(invalidators);
            }
        }
    }
    
    public Ruby getClassRuntime() {
        return runtime;
    }

    public final RubyClass getRealClass() {
        return realClass;
    }    

    @JRubyMethod(name = "inherited", required = 1, visibility = PRIVATE)
    public IRubyObject inherited(ThreadContext context, IRubyObject arg) {
        return runtime.getNil();
    }

    /** rb_class_inherited (reversed semantics!)
     * 
     */
    public void inherit(RubyClass superClazz) {
        if (superClazz == null) superClazz = runtime.getObject();

        if (getRuntime().getNil() != null) {
            superClazz.invokeInherited(runtime.getCurrentContext(), superClazz, this);
        }
    }

    /** Return the real super class of this class.
     * 
     * rb_class_superclass
     *
     */    
    @JRubyMethod(name = "superclass")
    public IRubyObject superclass(ThreadContext context) {
        RubyClass superClazz = superClass;
        
        if (superClazz == null) {
            if (runtime.is1_9() && metaClass == runtime.getBasicObject().getMetaClass()) return runtime.getNil();
            throw runtime.newTypeError("uninitialized class");
        }

        while (superClazz != null && superClazz.isIncluded()) superClazz = superClazz.superClass;

        return superClazz != null ? superClazz : runtime.getNil();
    }

    private void checkNotInitialized() {
        if (superClass != null || (runtime.is1_9() && this == runtime.getBasicObject())) {
            throw runtime.newTypeError("already initialized class");
        }
    }
    /** rb_check_inheritable
     * 
     */
    public static void checkInheritable(IRubyObject superClass) {
        if (!(superClass instanceof RubyClass)) {
            throw superClass.getRuntime().newTypeError("superclass must be a Class (" + superClass.getMetaClass() + " given)"); 
        }
        if (((RubyClass)superClass).isSingleton()) {
            throw superClass.getRuntime().newTypeError("can't make subclass of virtual class");
        }        
    }

    public final ObjectMarshal getMarshal() {
        return marshal;
    }
    
    public final void setMarshal(ObjectMarshal marshal) {
        this.marshal = marshal;
    }
    
    public final void marshal(Object obj, MarshalStream marshalStream) throws IOException {
        getMarshal().marshalTo(runtime, obj, this, marshalStream);
    }
    
    public final Object unmarshal(UnmarshalStream unmarshalStream) throws IOException {
        return getMarshal().unmarshalFrom(runtime, this, unmarshalStream);
    }
    
    public static void marshalTo(RubyClass clazz, MarshalStream output) throws java.io.IOException {
        output.registerLinkTarget(clazz);
        output.writeString(MarshalStream.getPathFromClass(clazz));
    }

    public static RubyClass unmarshalFrom(UnmarshalStream input) throws java.io.IOException {
        String name = RubyString.byteListToString(input.unmarshalString());
        RubyClass result = UnmarshalStream.getClassFromPath(input.getRuntime(), name);
        input.registerLinkTarget(result);
        return result;
    }

    protected static final ObjectMarshal DEFAULT_OBJECT_MARSHAL = new ObjectMarshal() {
        public void marshalTo(Ruby runtime, Object obj, RubyClass type,
                              MarshalStream marshalStream) throws IOException {
            IRubyObject object = (IRubyObject)obj;
            
            marshalStream.registerLinkTarget(object);
            marshalStream.dumpVariables(object.getVariableList());
        }

        public Object unmarshalFrom(Ruby runtime, RubyClass type,
                                    UnmarshalStream unmarshalStream) throws IOException {
            IRubyObject result = type.allocate();
            
            unmarshalStream.registerLinkTarget(result);

            unmarshalStream.defaultVariablesUnmarshal(result);

            return result;
        }
    };

    /**
     * Whether this class can be reified into a Java class. Currently only objects
     * that descend from Object (or descend from Ruby-based classes that descend
     * from Object) can be reified.
     *
     * @return true if the class can be reified, false otherwise
     */
    public boolean isReifiable() {
        RubyClass realSuper = null;

        // already reified is not reifiable
        if (reifiedClass != null) return false;

        // root classes are not reifiable
        if (superClass == null || (realSuper = superClass.getRealClass()) == null) return false;

        Class reifiedSuper = realSuper.reifiedClass;
        
        // if super has been reified or is a native class
        if (reifiedSuper != null) {
            
            // super must be Object, BasicObject, or a reified user class
            return reifiedSuper == RubyObject.class ||
                    reifiedSuper == RubyBasicObject.class ||
                    Reified.class.isAssignableFrom(reifiedSuper);
        } else {
            // non-native, non-reified super; recurse
            return realSuper.isReifiable();
        }
    }
    
    public void reifyWithAncestors() {
        reifyWithAncestors(null, true);
    }
    public void reifyWithAncestors(String classDumpDir) {
        reifyWithAncestors(classDumpDir, true);
    }
    public void reifyWithAncestors(boolean useChildLoader) {
        reifyWithAncestors(null, useChildLoader);
    }
    
    /**
     * Reify this class, first reifying all its ancestors. This causes the
     * reified class and all ancestors' reified classes to come into existence,
     * so any future changes will not be reflected.
     *
     * This form also accepts a string argument indicating a path in which to dump
     * the intermediate reified class bytes.
     *
     * @param classDumpDir the path in which to dump reified class bytes
     * @param useChildLoader whether to load the class into its own child classloader
     */
    public void reifyWithAncestors(String classDumpDir, boolean useChildLoader) {
        if (isReifiable()) {
            RubyClass realSuper = getSuperClass().getRealClass();

            if (realSuper.reifiedClass == null) realSuper.reifyWithAncestors(classDumpDir, useChildLoader);
            reify(classDumpDir, useChildLoader);
        }
    }

    private static final boolean DEBUG_REIFY = false;

    public synchronized void reify() {
        reify(null, true);
    }
    public synchronized void reify(String classDumpDir) {
        reify(classDumpDir, true);
    }
    public synchronized void reify(boolean useChildLoader) {
        reify(null, useChildLoader);
    }

    /**
     * Stand up a real Java class for the backing store of this object
     * @param classDumpDir Directory to save reified java class
     */
    public synchronized void reify(String classDumpDir, boolean useChildLoader) {
        Class reifiedParent = RubyObject.class;

        // calculate an appropriate name, using "Anonymous####" if none is present
        String name;
        if (getBaseName() == null) {
            name = "AnonymousRubyClass__" + id;
        } else {
            name = getName();
        }
        
        String javaName = "rubyobj." + name.replaceAll("::", ".");
        String javaPath = "rubyobj/" + name.replaceAll("::", "/");
        ClassDefiningClassLoader parentCL;
        Class parentReified = superClass.getRealClass().getReifiedClass();
        if (parentReified == null) {
            throw getClassRuntime().newTypeError("class " + getName() + " parent class is not yet reified");
        }
        
        if (parentReified.getClassLoader() instanceof OneShotClassLoader) {
            parentCL = (OneShotClassLoader)superClass.getRealClass().getReifiedClass().getClassLoader();
        } else {
            if (useChildLoader) {
                parentCL = new OneShotClassLoader(runtime.getJRubyClassLoader());
            } else {
                parentCL = runtime.getJRubyClassLoader();
            }
        }

        if (superClass.reifiedClass != null) {
            reifiedParent = superClass.reifiedClass;
        }

        Class[] interfaces = Java.getInterfacesFromRubyClass(this);
        String[] interfaceNames = new String[interfaces.length + 1];
        
        // mark this as a Reified class
        interfaceNames[0] = p(Reified.class);

        // add the other user-specified interfaces
        for (int i = 0; i < interfaces.length; i++) {
            interfaceNames[i + 1] = p(interfaces[i]);
        }

        ClassWriter cw = new ClassWriter(ClassWriter.COMPUTE_FRAMES | ClassWriter.COMPUTE_MAXS);
        cw.visit(RubyInstanceConfig.JAVA_VERSION, ACC_PUBLIC + ACC_SUPER, javaPath, null, p(reifiedParent),
                interfaceNames);

        if (classAnnotations != null && classAnnotations.size() != 0) {
            for (Map.Entry> entry : classAnnotations.entrySet()) {
                Class annoType = entry.getKey();
                Map fields = entry.getValue();

                AnnotationVisitor av = cw.visitAnnotation(ci(annoType), true);
                CodegenUtils.visitAnnotationFields(av, fields);
                av.visitEnd();
            }
        }

        // fields to hold Ruby and RubyClass references
        cw.visitField(ACC_STATIC | ACC_PRIVATE, "ruby", ci(Ruby.class), null, null);
        cw.visitField(ACC_STATIC | ACC_PRIVATE, "rubyClass", ci(RubyClass.class), null, null);

        // static initializing method
        SkinnyMethodAdapter m = new SkinnyMethodAdapter(cw, ACC_PUBLIC | ACC_STATIC, "clinit", sig(void.class, Ruby.class, RubyClass.class), null, null);
        m.start();
        m.aload(0);
        m.putstatic(javaPath, "ruby", ci(Ruby.class));
        m.aload(1);
        m.putstatic(javaPath, "rubyClass", ci(RubyClass.class));
        m.voidreturn();
        m.end();

        // standard constructor that accepts Ruby, RubyClass
        m = new SkinnyMethodAdapter(cw, ACC_PUBLIC, "", sig(void.class, Ruby.class, RubyClass.class), null, null);
        m.aload(0);
        m.aload(1);
        m.aload(2);
        m.invokespecial(p(reifiedParent), "", sig(void.class, Ruby.class, RubyClass.class));
        m.voidreturn();
        m.end();

        // no-arg constructor using static references to Ruby and RubyClass
        m = new SkinnyMethodAdapter(cw, ACC_PUBLIC, "", CodegenUtils.sig(void.class), null, null);
        m.aload(0);
        m.getstatic(javaPath, "ruby", ci(Ruby.class));
        m.getstatic(javaPath, "rubyClass", ci(RubyClass.class));
        m.invokespecial(p(reifiedParent), "", sig(void.class, Ruby.class, RubyClass.class));
        m.voidreturn();
        m.end();

        // gather a list of instance methods, so we don't accidentally make static ones that conflict
        Set instanceMethods = new HashSet();

        // define instance methods
        for (Map.Entry methodEntry : getMethods().entrySet()) {
            String methodName = methodEntry.getKey();

            if (!JavaNameMangler.willMethodMangleOk(methodName)) continue;

            String javaMethodName = JavaNameMangler.mangleMethodName(methodName);

            Map> methodAnnos = getMethodAnnotations().get(methodName);
            List>> parameterAnnos = getParameterAnnotations().get(methodName);
            Class[] methodSignature = getMethodSignatures().get(methodName);

            String signature;
            if (methodSignature == null) {
                // non-signature signature with just IRubyObject
                switch (methodEntry.getValue().getArity().getValue()) {
                case 0:
                    signature = sig(IRubyObject.class);
                    m = new SkinnyMethodAdapter(cw, ACC_PUBLIC | ACC_VARARGS, javaMethodName, signature, null, null);
                    generateMethodAnnotations(methodAnnos, m, parameterAnnos);

                    m.aload(0);
                    m.ldc(methodName);
                    m.invokevirtual(javaPath, "callMethod", sig(IRubyObject.class, String.class));
                    break;
                default:
                    signature = sig(IRubyObject.class, IRubyObject[].class);
                    m = new SkinnyMethodAdapter(cw, ACC_PUBLIC | ACC_VARARGS, javaMethodName, signature, null, null);
                    generateMethodAnnotations(methodAnnos, m, parameterAnnos);

                    m.aload(0);
                    m.ldc(methodName);
                    m.aload(1);
                    m.invokevirtual(javaPath, "callMethod", sig(IRubyObject.class, String.class, IRubyObject[].class));
                }
                m.areturn();
            } else {
                // generate a real method signature for the method, with to/from coercions

                // indices for temp values
                Class[] params = new Class[methodSignature.length - 1];
                System.arraycopy(methodSignature, 1, params, 0, params.length);
                int baseIndex = 1;
                for (Class paramType : params) {
                    if (paramType == double.class || paramType == long.class) {
                        baseIndex += 2;
                    } else {
                        baseIndex += 1;
                    }
                }
                int rubyIndex = baseIndex;

                signature = sig(methodSignature[0], params);
                m = new SkinnyMethodAdapter(cw, ACC_PUBLIC | ACC_VARARGS, javaMethodName, signature, null, null);
                generateMethodAnnotations(methodAnnos, m, parameterAnnos);

                m.getstatic(javaPath, "ruby", ci(Ruby.class));
                m.astore(rubyIndex);

                m.aload(0); // self
                m.ldc(methodName); // method name
                RealClassGenerator.coerceArgumentsToRuby(m, params, rubyIndex);
                m.invokevirtual(javaPath, "callMethod", sig(IRubyObject.class, String.class, IRubyObject[].class));

                RealClassGenerator.coerceResultAndReturn(m, methodSignature[0]);
            }

            if (DEBUG_REIFY) LOG.debug("defining {}#{} as {}#{}", getName(), methodName, javaName, javaMethodName + signature);

            instanceMethods.add(javaMethodName + signature);

            m.end();
        }

        // define class/static methods
        for (Map.Entry methodEntry : getMetaClass().getMethods().entrySet()) {
            String methodName = methodEntry.getKey();

            if (!JavaNameMangler.willMethodMangleOk(methodName)) continue;

            String javaMethodName = JavaNameMangler.mangleMethodName(methodName);

            Map> methodAnnos = getMetaClass().getMethodAnnotations().get(methodName);
            List>> parameterAnnos = getMetaClass().getParameterAnnotations().get(methodName);
            Class[] methodSignature = getMetaClass().getMethodSignatures().get(methodName);

            String signature;
            if (methodSignature == null) {
                // non-signature signature with just IRubyObject
                switch (methodEntry.getValue().getArity().getValue()) {
                case 0:
                    signature = sig(IRubyObject.class);
                    if (instanceMethods.contains(javaMethodName + signature)) continue;
                    m = new SkinnyMethodAdapter(cw, ACC_PUBLIC | ACC_VARARGS | ACC_STATIC, javaMethodName, signature, null, null);
                    generateMethodAnnotations(methodAnnos, m, parameterAnnos);

                    m.getstatic(javaPath, "rubyClass", ci(RubyClass.class));
                    //m.invokevirtual("org/jruby/RubyClass", "getMetaClass", sig(RubyClass.class) );
                    m.ldc(methodName); // Method name
                    m.invokevirtual("org/jruby/RubyClass", "callMethod", sig(IRubyObject.class, String.class) );
                    break;
                default:
                    signature = sig(IRubyObject.class, IRubyObject[].class);
                    if (instanceMethods.contains(javaMethodName + signature)) continue;
                    m = new SkinnyMethodAdapter(cw, ACC_PUBLIC | ACC_VARARGS | ACC_STATIC, javaMethodName, signature, null, null);
                    generateMethodAnnotations(methodAnnos, m, parameterAnnos);

                    m.getstatic(javaPath, "rubyClass", ci(RubyClass.class));
                    m.ldc(methodName); // Method name
                    m.aload(0);
                    m.invokevirtual("org/jruby/RubyClass", "callMethod", sig(IRubyObject.class, String.class, IRubyObject[].class) );
                }
                m.areturn();
            } else {
                // generate a real method signature for the method, with to/from coercions

                // indices for temp values
                Class[] params = new Class[methodSignature.length - 1];
                System.arraycopy(methodSignature, 1, params, 0, params.length);
                int baseIndex = 0;
                for (Class paramType : params) {
                    if (paramType == double.class || paramType == long.class) {
                        baseIndex += 2;
                    } else {
                        baseIndex += 1;
                    }
                }
                int rubyIndex = baseIndex;

                signature = sig(methodSignature[0], params);
                if (instanceMethods.contains(javaMethodName + signature)) continue;
                m = new SkinnyMethodAdapter(cw, ACC_PUBLIC | ACC_VARARGS | ACC_STATIC, javaMethodName, signature, null, null);
                generateMethodAnnotations(methodAnnos, m, parameterAnnos);

                m.getstatic(javaPath, "ruby", ci(Ruby.class));
                m.astore(rubyIndex);

                m.getstatic(javaPath, "rubyClass", ci(RubyClass.class));
                
                m.ldc(methodName); // method name
                RealClassGenerator.coerceArgumentsToRuby(m, params, rubyIndex);
                m.invokevirtual("org/jruby/RubyClass", "callMethod", sig(IRubyObject.class, String.class, IRubyObject[].class));

                RealClassGenerator.coerceResultAndReturn(m, methodSignature[0]);
            }

            if (DEBUG_REIFY) LOG.debug("defining {}.{} as {}.{}", getName(), methodName, javaName, javaMethodName + signature);

            m.end();
        }


        cw.visitEnd();
        byte[] classBytes = cw.toByteArray();
        dumpReifiedClass(classDumpDir, javaPath, classBytes);
        Class result = parentCL.defineClass(javaName, classBytes);

        try {
            java.lang.reflect.Method clinit = result.getDeclaredMethod("clinit", Ruby.class, RubyClass.class);
            clinit.invoke(null, runtime, this);
        } catch (Exception e) {
            if (RubyInstanceConfig.REIFY_LOG_ERRORS) {
                LOG.error("failed to reify class " + getName() + " due to:\n");
                LOG.error(e);
            }
        }

        setClassAllocator(result);
        reifiedClass = result;
    }

    public void setReifiedClass(Class newReifiedClass) {
        this.reifiedClass = newReifiedClass;
    }

    public Class getReifiedClass() {
        return reifiedClass;
    }

    public Map>>> getParameterAnnotations() {
        if (parameterAnnotations == null) return Collections.EMPTY_MAP;
        return parameterAnnotations;
    }

    public synchronized void addParameterAnnotation(String method, int i, Class annoClass, Map value) {
        if (parameterAnnotations == null) parameterAnnotations = new Hashtable>>>();
        List>> paramList = parameterAnnotations.get(method);
        if (paramList == null) {
            paramList = new ArrayList>>(i + 1);
            parameterAnnotations.put(method, paramList);
        }
        if (paramList.size() < i + 1) {
            for (int j = paramList.size(); j < i + 1; j++) {
                paramList.add(null);
            }
        }
        if (annoClass != null && value != null) {
            Map> annos = paramList.get(i);
            if (annos == null) {
                annos = new HashMap>();
                paramList.set(i, annos);
            }
            annos.put(annoClass, value);
        } else {
            paramList.set(i, null);
        }
    }

    public Map>> getMethodAnnotations() {
        if (methodAnnotations == null) return Collections.EMPTY_MAP;

        return methodAnnotations;
    }

    public synchronized void addMethodAnnotation(String methodName, Class annotation, Map fields) {
        if (methodAnnotations == null) methodAnnotations = new Hashtable>>();

        Map> annos = methodAnnotations.get(methodName);
        if (annos == null) {
            annos = new Hashtable>();
            methodAnnotations.put(methodName, annos);
        }

        annos.put(annotation, fields);
    }

    public Map getMethodSignatures() {
        if (methodSignatures == null) return Collections.EMPTY_MAP;

        return methodSignatures;
    }

    public synchronized void addMethodSignature(String methodName, Class[] types) {
        if (methodSignatures == null) methodSignatures = new Hashtable();

        methodSignatures.put(methodName, types);
    }

    public Map> getClassAnnotations() {
        if (classAnnotations == null) return Collections.EMPTY_MAP;

        return classAnnotations;
    }

    public synchronized void addClassAnnotation(Class annotation, Map fields) {
        if (classAnnotations == null) classAnnotations = new Hashtable>();

        classAnnotations.put(annotation, fields);
    }

    @Override
    public Object toJava(Class klass) {
        Class returnClass = null;

        if (klass == Class.class) {
            // Class requested; try java_class or else return nearest reified class
            if (respondsTo("java_class")) {
                return callMethod("java_class").toJava(klass);
            } else {
                for (RubyClass current = this; current != null; current = current.getSuperClass()) {
                    returnClass = current.getReifiedClass();
                    if (returnClass != null) return returnClass;
                }
            }
            // should never fall through, since RubyObject has a reified class
        }

        if (klass.isAssignableFrom(RubyClass.class)) {
            // they're asking for something RubyClass extends, give them that
            return this;
        }

        return super.toJava(klass);
    }

    /**
     * An enum defining the type of marshaling a given class's objects employ.
     */
    private static enum MarshalType {
        DEFAULT, NEW_USER, OLD_USER, DEFAULT_SLOW, NEW_USER_SLOW, USER_SLOW
    }

    /**
     * A tuple representing the mechanism by which objects should be marshaled.
     *
     * This tuple caches the type of marshaling to perform (from @MarshalType),
     * the method to be used for marshaling data (either marshal_load/dump or
     * _load/_dump), and the generation of the class at the time this tuple was
     * created. When "dump" or "load" are invoked, they either call the default
     * marshaling logic (@MarshalType.DEFAULT) or they further invoke the cached
     * marshal_dump/load or _dump/_load methods to marshal the data.
     *
     * It is expected that code outside MarshalTuple will validate that the
     * generation number still matches before invoking load or dump.
     */
    private static class MarshalTuple {
        /**
         * Construct a new MarshalTuple with the given values.
         *
         * @param method The method to invoke, or null in the case of default
         * marshaling.
         * @param type The type of marshaling to perform, from @MarshalType
         * @param generation The generation of the associated class at the time
         * of creation.
         */
        public MarshalTuple(DynamicMethod method, MarshalType type, int generation) {
            this.method = method;
            this.type = type;
            this.generation = generation;
        }

        /**
         * Dump the given object to the given stream, using the appropriate
         * marshaling method.
         *
         * @param stream The stream to which to dump
         * @param object The object to dump
         * @throws IOException If there is an IO error during dumping
         */
        public void dump(MarshalStream stream, IRubyObject object) throws IOException {
            switch (type) {
                case DEFAULT:
                    stream.writeDirectly(object);
                    return;
                case NEW_USER:
                    stream.userNewMarshal(object, method);
                    return;
                case OLD_USER:
                    stream.userMarshal(object, method);
                    return;
                case DEFAULT_SLOW:
                    if (object.respondsTo("marshal_dump")) {
                        stream.userNewMarshal(object);
                    } else if (object.respondsTo("_dump")) {
                        stream.userMarshal(object);
                    } else {
                        stream.writeDirectly(object);
                    }
                    return;
            }
        }

        /** A "null" tuple, used as the default value for caches. */
        public static final MarshalTuple NULL_TUPLE = new MarshalTuple(null, null, 0);
        /** The method associated with this tuple. */
        public final DynamicMethod method;
        /** The type of marshaling that will be performed */
        public final MarshalType type;
        /** The generation of the associated class at the time of creation */
        public final int generation;
    }

    /**
     * Marshal the given object to the marshaling stream, being "smart" and
     * caching how to do that marshaling.
     *
     * If the class defines a custom "respond_to?" method, then the behavior of
     * dumping could vary without our class structure knowing it. As a result,
     * we do only the slow-path classic behavior.
     *
     * If the class defines a real "marshal_dump" method, we cache and use that.
     *
     * If the class defines a real "_dump" method, we cache and use that.
     *
     * If the class neither defines none of the above methods, we use a fast
     * path directly to the default dumping logic.
     *
     * @param stream The stream to which to marshal the data
     * @param target The object whose data should be marshaled
     * @throws IOException If there is an IO exception while writing to the
     * stream.
     */
    public void smartDump(MarshalStream stream, IRubyObject target) throws IOException {
        MarshalTuple tuple;
        if ((tuple = cachedDumpMarshal).generation == generation) {
        } else {
            // recache
            DynamicMethod method = searchMethod("respond_to?");
            if (!method.equals(runtime.getRespondToMethod()) && !method.isUndefined()) {

                // custom respond_to?, always do slow default marshaling
                tuple = (cachedDumpMarshal = new MarshalTuple(null, MarshalType.DEFAULT_SLOW, generation));

            } else if (!(method = searchMethod("marshal_dump")).isUndefined()) {

                // object really has 'marshal_dump', cache "new" user marshaling
                tuple = (cachedDumpMarshal = new MarshalTuple(method, MarshalType.NEW_USER, generation));

            } else if (!(method = searchMethod("_dump")).isUndefined()) {

                // object really has '_dump', cache "old" user marshaling
                tuple = (cachedDumpMarshal = new MarshalTuple(method, MarshalType.OLD_USER, generation));

            } else {

                // no respond_to?, marshal_dump, or _dump, so cache default marshaling
                tuple = (cachedDumpMarshal = new MarshalTuple(null, MarshalType.DEFAULT, generation));
            }
        }

        tuple.dump(stream, target);
    }

    /**
     * Load marshaled data into a blank target object using marshal_load, being
     * "smart" and caching the mechanism for invoking marshal_load.
     *
     * If the class implements a custom respond_to?, cache nothing and go slow
     * path invocation of respond_to? and marshal_load every time. Raise error
     * if respond_to? :marshal_load returns true and no :marshal_load is
     * defined.
     *
     * If the class implements marshal_load, cache and use that.
     *
     * Otherwise, error, since marshal_load is not present.
     *
     * @param target The blank target object into which marshal_load will
     * deserialize the given data
     * @param data The marshaled data
     * @return The fully-populated target object
     */
    public IRubyObject smartLoadNewUser(IRubyObject target, IRubyObject data) {
        ThreadContext context = runtime.getCurrentContext();
        CacheEntry cache;
        if ((cache = cachedLoad).token == generation) {
            cache.method.call(context, target, this, "marshal_load", data);
            return target;
        } else {
            DynamicMethod method = searchMethod("respond_to?");
            if (!method.equals(runtime.getRespondToMethod()) && !method.isUndefined()) {

                // custom respond_to?, cache nothing and use slow path
                if (method.call(context, target, this, "respond_to?", runtime.newSymbol("marshal_load")).isTrue()) {
                    target.callMethod(context, "marshal_load", data);
                    return target;
                } else {
                    throw runtime.newTypeError("class " + getName() + " needs to have method `marshal_load'");
                }

            } else if (!(cache = searchWithCache("marshal_load")).method.isUndefined()) {

                // real marshal_load defined, cache and call it
                cachedLoad = cache;
                cache.method.call(context, target, this, "marshal_load", data);
                return target;

            } else {

                // go ahead and call, method_missing might handle it
                target.callMethod(context, "marshal_load", data);
                return target;
                
            }
        }
    }


    /**
     * Load marshaled data into a blank target object using _load, being
     * "smart" and caching the mechanism for invoking _load.
     *
     * If the metaclass implements custom respond_to?, cache nothing and go slow
     * path invocation of respond_to? and _load every time. Raise error if
     * respond_to? :_load returns true and no :_load is defined.
     *
     * If the metaclass implements _load, cache and use that.
     *
     * Otherwise, error, since _load is not present.
     *
     * @param data The marshaled data, to be reconstituted into an object by
     * _load
     * @return The fully-populated target object
     */
    public IRubyObject smartLoadOldUser(IRubyObject data) {
        ThreadContext context = runtime.getCurrentContext();
        CacheEntry cache;
        if ((cache = getSingletonClass().cachedLoad).token == getSingletonClass().generation) {
            return cache.method.call(context, this, getSingletonClass(), "_load", data);
        } else {
            DynamicMethod method = getSingletonClass().searchMethod("respond_to?");
            if (!method.equals(runtime.getRespondToMethod()) && !method.isUndefined()) {

                // custom respond_to?, cache nothing and use slow path
                if (method.call(context, this, getSingletonClass(), "respond_to?", runtime.newSymbol("_load")).isTrue()) {
                    return callMethod(context, "_load", data);
                } else {
                    throw runtime.newTypeError("class " + getName() + " needs to have method `_load'");
                }

            } else if (!(cache = getSingletonClass().searchWithCache("_load")).method.isUndefined()) {

                // real _load defined, cache and call it
                getSingletonClass().cachedLoad = cache;
                return cache.method.call(context, this, getSingletonClass(), "_load", data);

            } else {

                // provide an error, since it doesn't exist
                throw runtime.newTypeError("class " + getName() + " needs to have method `_load'");

            }
        }
    }

    protected final Ruby runtime;
    private ObjectAllocator allocator; // the default allocator
    protected ObjectMarshal marshal;
    private Set subclasses;
    public static final int CS_IDX_INITIALIZE = 0;
    public static final String[] CS_NAMES = {
        "initialize"
    };
    private final CallSite[] baseCallSites = new CallSite[CS_NAMES.length];
    {
        for(int i = 0; i < CS_NAMES.length; i++) {
            baseCallSites[i] = MethodIndex.getFunctionalCallSite(CS_NAMES[i]);
        }
    }

    private CallSite[] extraCallSites;

    private Class reifiedClass;

    @SuppressWarnings("unchecked")
    private static String[] EMPTY_STRING_ARRAY = new String[0];
    private Map variableAccessors = (Map)Collections.EMPTY_MAP;
    private volatile String[] variableNames = EMPTY_STRING_ARRAY;

    private volatile boolean hasObjectID = false;
    public boolean hasObjectID() {
        return hasObjectID;
    }

    private Map>>> parameterAnnotations;

    private Map>> methodAnnotations;

    private Map methodSignatures;

    private Map> classAnnotations;

    /** A cached tuple of method, type, and generation for dumping */
    private MarshalTuple cachedDumpMarshal = MarshalTuple.NULL_TUPLE;

    /** A cached tuple of method and generation for marshal loading */
    private CacheEntry cachedLoad = CacheEntry.NULL_CACHE;

    /** The "real" class, used by includes and singletons to locate the actual type of the object */
    private final RubyClass realClass;
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy