All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jscsi.parser.digest.CRCTables Maven / Gradle / Ivy

The newest version!
/**
 * Copyright (c) 2012, University of Konstanz, Distributed Systems Group All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
 * following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of
 * conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation and/or other materials provided with the
 * distribution. * Neither the name of the University of Konstanz nor the names of its contributors may be used to
 * endorse or promote products derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.jscsi.parser.digest;

/**
 * 

CRCTables

*

* This class generates tables for CRC algorithm. It is possible to change the generator polynom and the offset. Usage: *

    *
  1. Make new CRCTables object.
  2. *
  3. Put generatorPolynom in the constructor.
  4. *
  5. Invoke the method getTable with offset as an argument. The offset is an integer number, which * specifies the number of bits to shift, e.g. for A offset is 56, for D * 32.
  6. *
  7. You will have CRC table(0-255) for the requested polynom.
  8. *
* * @author Stepan */ public final class CRCTables { // -------------------------------------------------------------------------- // -------------------------------------------------------------------------- /** The size of a table. */ private static final int SIZE_OF_TABLE = 256; /** Bit mask for throwing away the 33-rd bit. */ private static final long BIN_MASK_33BIT = 0x00000000FFFFFFFFL; /** Bit mask with 1 only in the first position. */ private static final long BIN_MASK_1FIRST_ONLY = 0x8000000000000000L; /** Bit mask with 1 only in the first position for int. */ private static final int BIN_MASK_1FIRST_ONLY_INT = 0x80000000; // -------------------------------------------------------------------------- // -------------------------------------------------------------------------- /** The generator polynom. */ private final long generatorPolynom; // -------------------------------------------------------------------------- // -------------------------------------------------------------------------- /** * Constructor to create a new, empty CRCTables object with the initialized generator polynom. * * @param initGeneratorPolynom The generator polynom to use. */ public CRCTables (final long initGeneratorPolynom) { // FIXME: Really needed? generatorPolynom = initGeneratorPolynom; } // -------------------------------------------------------------------------- // -------------------------------------------------------------------------- /** * Returns all remainders of the polynomial division for the given offset. * * @param offset The numbers of bits to shift, e.g. for A offset is 56, for D * 32. * @return The CRC table with all remainders for the given offset. */ public final int[] getTable (final int offset) { final int[] table = new int[SIZE_OF_TABLE]; long numberToCalculate; for (int number = 0; number < table.length; number++) { numberToCalculate = Integer.reverseBytes(Integer.reverse(number)); table[number] = calculateCRC32(numberToCalculate << offset); } return table; } // -------------------------------------------------------------------------- // -------------------------------------------------------------------------- /** * Method for CRC calculation for the just one value (type long) Algorithm: Load the register with zero bits. * Reverse message Augment the message by appending W zero bits to the end of it. While (more message bits) Begin * Shift the register left by one bit, reading the next bit of the augmented message into register bit position 0. * If (a 1 bit popped out of the register during step 3) Register = Register XOR Poly. End Reverse register The * register now contains the CRC. Notes: W=32, that's why we have offsets 32, 40, 48 and 56 instead of 0,8,16,24 * Size of register=W; * * @param value A long value, for which the CRC should be calculated. * @return The remainder of the polynomial division --> CRC. */ protected final int calculateCRC32 (final long value) { long l = value; int register = 0; // We are going to throw the first bit away. Then making int from long. final int gxInt = (int) (generatorPolynom & BIN_MASK_33BIT); // the first bit before bit shifting in the input polynom int bit = 0; for (int i = 0; i < Long.SIZE; i++) { // is the highest bit set? if ((l & BIN_MASK_1FIRST_ONLY) == 0) { bit = 0; } else { bit = 1; } // is the highest bit set? if ((register & BIN_MASK_1FIRST_ONLY_INT) == 0) { register = register << 1; l = l << 1; register += bit; } else { register = register << 1; l = l << 1; register += bit; register = register ^ gxInt; } } return Integer.reverse(register); } // -------------------------------------------------------------------------- // -------------------------------------------------------------------------- // -------------------------------------------------------------------------- // -------------------------------------------------------------------------- }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy