All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.trilead.ssh2.crypto.digest.SHA1 Maven / Gradle / Ivy

Go to download

Ganymed SSH2 for Java is a library which implements the SSH-2 protocol in pure Java

There is a newer version: build212-hudson-6
Show newest version

package com.trilead.ssh2.crypto.digest;

/**
 * SHA-1 implementation based on FIPS PUB 180-1.
 * Highly optimized.
 * 

* (http://www.itl.nist.gov/fipspubs/fip180-1.htm) * * @author Christian Plattner, [email protected] * @version $Id: SHA1.java,v 1.1 2007/10/15 12:49:57 cplattne Exp $ */ public final class SHA1 implements Digest { private int H0, H1, H2, H3, H4; private final int[] w = new int[80]; private int currentPos; private long currentLen; public SHA1() { reset(); } public final int getDigestLength() { return 20; } public final void reset() { H0 = 0x67452301; H1 = 0xEFCDAB89; H2 = 0x98BADCFE; H3 = 0x10325476; H4 = 0xC3D2E1F0; currentPos = 0; currentLen = 0; /* In case of complete paranoia, we should also wipe out the * information contained in the w[] array */ } public final void update(byte b[]) { update(b, 0, b.length); } public final void update(byte b[], int off, int len) { if (len >= 4) { int idx = currentPos >> 2; switch (currentPos & 3) { case 0: w[idx] = (((b[off++] & 0xff) << 24) | ((b[off++] & 0xff) << 16) | ((b[off++] & 0xff) << 8) | (b[off++] & 0xff)); len -= 4; currentPos += 4; currentLen += 32; if (currentPos == 64) { perform(); currentPos = 0; } break; case 1: w[idx] = (w[idx] << 24) | (((b[off++] & 0xff) << 16) | ((b[off++] & 0xff) << 8) | (b[off++] & 0xff)); len -= 3; currentPos += 3; currentLen += 24; if (currentPos == 64) { perform(); currentPos = 0; } break; case 2: w[idx] = (w[idx] << 16) | (((b[off++] & 0xff) << 8) | (b[off++] & 0xff)); len -= 2; currentPos += 2; currentLen += 16; if (currentPos == 64) { perform(); currentPos = 0; } break; case 3: w[idx] = (w[idx] << 8) | (b[off++] & 0xff); len--; currentPos++; currentLen += 8; if (currentPos == 64) { perform(); currentPos = 0; } break; } /* Now currentPos is a multiple of 4 - this is the place to be...*/ while (len >= 8) { w[currentPos >> 2] = ((b[off++] & 0xff) << 24) | ((b[off++] & 0xff) << 16) | ((b[off++] & 0xff) << 8) | (b[off++] & 0xff); currentPos += 4; if (currentPos == 64) { perform(); currentPos = 0; } w[currentPos >> 2] = ((b[off++] & 0xff) << 24) | ((b[off++] & 0xff) << 16) | ((b[off++] & 0xff) << 8) | (b[off++] & 0xff); currentPos += 4; if (currentPos == 64) { perform(); currentPos = 0; } currentLen += 64; len -= 8; } while (len < 0) //(len >= 4) { w[currentPos >> 2] = ((b[off++] & 0xff) << 24) | ((b[off++] & 0xff) << 16) | ((b[off++] & 0xff) << 8) | (b[off++] & 0xff); len -= 4; currentPos += 4; currentLen += 32; if (currentPos == 64) { perform(); currentPos = 0; } } } /* Remaining bytes (1-3) */ while (len > 0) { /* Here is room for further improvements */ int idx = currentPos >> 2; w[idx] = (w[idx] << 8) | (b[off++] & 0xff); currentLen += 8; currentPos++; if (currentPos == 64) { perform(); currentPos = 0; } len--; } } public final void update(byte b) { int idx = currentPos >> 2; w[idx] = (w[idx] << 8) | (b & 0xff); currentLen += 8; currentPos++; if (currentPos == 64) { perform(); currentPos = 0; } } private final void putInt(byte[] b, int pos, int val) { b[pos] = (byte) (val >> 24); b[pos + 1] = (byte) (val >> 16); b[pos + 2] = (byte) (val >> 8); b[pos + 3] = (byte) val; } public final void digest(byte[] out) { digest(out, 0); } public final void digest(byte[] out, int off) { /* Pad with a '1' and 7-31 zero bits... */ int idx = currentPos >> 2; w[idx] = ((w[idx] << 8) | (0x80)) << ((3 - (currentPos & 3)) << 3); currentPos = (currentPos & ~3) + 4; if (currentPos == 64) { currentPos = 0; perform(); } else if (currentPos == 60) { currentPos = 0; w[15] = 0; perform(); } /* Now currentPos is a multiple of 4 and we can do the remaining * padding much more efficiently, furthermore we are sure * that currentPos <= 56. */ for (int i = currentPos >> 2; i < 14; i++) w[i] = 0; w[14] = (int) (currentLen >> 32); w[15] = (int) currentLen; perform(); putInt(out, off, H0); putInt(out, off + 4, H1); putInt(out, off + 8, H2); putInt(out, off + 12, H3); putInt(out, off + 16, H4); reset(); } private final void perform() { for (int t = 16; t < 80; t++) { int x = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16]; w[t] = ((x << 1) | (x >>> 31)); } int A = H0; int B = H1; int C = H2; int D = H3; int E = H4; /* Here we use variable substitution and loop unrolling * * === Original step: * * T = s5(A) + f(B,C,D) + E + w[0] + K; * E = D; D = C; C = s30(B); B = A; A = T; * * === Rewritten step: * * T = s5(A + f(B,C,D) + E + w[0] + K; * B = s30(B); * E = D; D = C; C = B; B = A; A = T; * * === Let's rewrite things, introducing new variables: * * E0 = E; D0 = D; C0 = C; B0 = B; A0 = A; * * T = s5(A0) + f(B0,C0,D0) + E0 + w[0] + K; * B0 = s30(B0); * E1 = D0; D1 = C0; C1 = B0; B1 = A0; A1 = T; * * T = s5(A1) + f(B1,C1,D1) + E1 + w[1] + K; * B1 = s30(B1); * E2 = D1; D2 = C1; C2 = B1; B2 = A1; A2 = T; * * E = E2; D = E2; C = C2; B = B2; A = A2; * * === No need for 'T', we can write into 'Ex' instead since * after the calculation of 'T' nobody is interested * in 'Ex' anymore. * * E0 = E; D0 = D; C0 = C; B0 = B; A0 = A; * * E0 = E0 + s5(A0) + f(B0,C0,D0) + w[0] + K; * B0 = s30(B0); * E1 = D0; D1 = C0; C1 = B0; B1 = A0; A1 = E0; * * E1 = E1 + s5(A1) + f(B1,C1,D1) + w[1] + K; * B1 = s30(B1); * E2 = D1; D2 = C1; C2 = B1; B2 = A1; A2 = E1; * * E = Ex; D = Ex; C = Cx; B = Bx; A = Ax; * * === Further optimization: get rid of the swap operations * Idea: instead of swapping the variables, swap the names of * the used variables in the next step: * * E0 = E; D0 = d; C0 = C; B0 = B; A0 = A; * * E0 = E0 + s5(A0) + f(B0,C0,D0) + w[0] + K; * B0 = s30(B0); * // E1 = D0; D1 = C0; C1 = B0; B1 = A0; A1 = E0; * * D0 = D0 + s5(E0) + f(A0,B0,C0) + w[1] + K; * A0 = s30(A0); * E2 = C0; D2 = B0; C2 = A0; B2 = E0; A2 = D0; * * E = E2; D = D2; C = C2; B = B2; A = A2; * * === OK, let's do this several times, also, directly * use A (instead of A0) and B,C,D,E. * * E = E + s5(A) + f(B,C,D) + w[0] + K; * B = s30(B); * // E1 = D; D1 = C; C1 = B; B1 = A; A1 = E; * * D = D + s5(E) + f(A,B,C) + w[1] + K; * A = s30(A); * // E2 = C; D2 = B; C2 = A; B2 = E; A2 = D; * * C = C + s5(D) + f(E,A,B) + w[2] + K; * E = s30(E); * // E3 = B; D3 = A; C3 = E; B3 = D; A3 = C; * * B = B + s5(C) + f(D,E,A) + w[3] + K; * D = s30(D); * // E4 = A; D4 = E; C4 = D; B4 = C; A4 = B; * * A = A + s5(B) + f(C,D,E) + w[4] + K; * C = s30(C); * // E5 = E; D5 = D; C5 = C; B5 = B; A5 = A; * * //E = E5; D = D5; C = C5; B = B5; A = A5; * * === Very nice, after 5 steps each variable * has the same contents as after 5 steps with * the original algorithm! * * We therefore can easily unroll each interval, * as the number of steps in each interval is a * multiple of 5 (20 steps per interval). */ E += ((A << 5) | (A >>> 27)) + ((B & C) | ((~B) & D)) + w[0] + 0x5A827999; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + ((A & B) | ((~A) & C)) + w[1] + 0x5A827999; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + ((E & A) | ((~E) & B)) + w[2] + 0x5A827999; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + ((D & E) | ((~D) & A)) + w[3] + 0x5A827999; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + ((C & D) | ((~C) & E)) + w[4] + 0x5A827999; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + ((B & C) | ((~B) & D)) + w[5] + 0x5A827999; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + ((A & B) | ((~A) & C)) + w[6] + 0x5A827999; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + ((E & A) | ((~E) & B)) + w[7] + 0x5A827999; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + ((D & E) | ((~D) & A)) + w[8] + 0x5A827999; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + ((C & D) | ((~C) & E)) + w[9] + 0x5A827999; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + ((B & C) | ((~B) & D)) + w[10] + 0x5A827999; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + ((A & B) | ((~A) & C)) + w[11] + 0x5A827999; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + ((E & A) | ((~E) & B)) + w[12] + 0x5A827999; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + ((D & E) | ((~D) & A)) + w[13] + 0x5A827999; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + ((C & D) | ((~C) & E)) + w[14] + 0x5A827999; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + ((B & C) | ((~B) & D)) + w[15] + 0x5A827999; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + ((A & B) | ((~A) & C)) + w[16] + 0x5A827999; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + ((E & A) | ((~E) & B)) + w[17] + 0x5A827999; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + ((D & E) | ((~D) & A)) + w[18] + 0x5A827999; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + ((C & D) | ((~C) & E)) + w[19] + 0x5A827999; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[20] + 0x6ED9EBA1; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[21] + 0x6ED9EBA1; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[22] + 0x6ED9EBA1; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[23] + 0x6ED9EBA1; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[24] + 0x6ED9EBA1; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[25] + 0x6ED9EBA1; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[26] + 0x6ED9EBA1; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[27] + 0x6ED9EBA1; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[28] + 0x6ED9EBA1; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[29] + 0x6ED9EBA1; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[30] + 0x6ED9EBA1; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[31] + 0x6ED9EBA1; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[32] + 0x6ED9EBA1; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[33] + 0x6ED9EBA1; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[34] + 0x6ED9EBA1; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[35] + 0x6ED9EBA1; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[36] + 0x6ED9EBA1; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[37] + 0x6ED9EBA1; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[38] + 0x6ED9EBA1; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[39] + 0x6ED9EBA1; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + ((B & C) | (B & D) | (C & D)) + w[40] + 0x8F1BBCDC; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + ((A & B) | (A & C) | (B & C)) + w[41] + 0x8F1BBCDC; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + ((E & A) | (E & B) | (A & B)) + w[42] + 0x8F1BBCDC; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + ((D & E) | (D & A) | (E & A)) + w[43] + 0x8F1BBCDC; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + ((C & D) | (C & E) | (D & E)) + w[44] + 0x8F1BBCDC; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + ((B & C) | (B & D) | (C & D)) + w[45] + 0x8F1BBCDC; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + ((A & B) | (A & C) | (B & C)) + w[46] + 0x8F1BBCDC; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + ((E & A) | (E & B) | (A & B)) + w[47] + 0x8F1BBCDC; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + ((D & E) | (D & A) | (E & A)) + w[48] + 0x8F1BBCDC; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + ((C & D) | (C & E) | (D & E)) + w[49] + 0x8F1BBCDC; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + ((B & C) | (B & D) | (C & D)) + w[50] + 0x8F1BBCDC; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + ((A & B) | (A & C) | (B & C)) + w[51] + 0x8F1BBCDC; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + ((E & A) | (E & B) | (A & B)) + w[52] + 0x8F1BBCDC; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + ((D & E) | (D & A) | (E & A)) + w[53] + 0x8F1BBCDC; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + ((C & D) | (C & E) | (D & E)) + w[54] + 0x8F1BBCDC; C = ((C << 30) | (C >>> 2)); E = E + ((A << 5) | (A >>> 27)) + ((B & C) | (B & D) | (C & D)) + w[55] + 0x8F1BBCDC; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + ((A & B) | (A & C) | (B & C)) + w[56] + 0x8F1BBCDC; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + ((E & A) | (E & B) | (A & B)) + w[57] + 0x8F1BBCDC; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + ((D & E) | (D & A) | (E & A)) + w[58] + 0x8F1BBCDC; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + ((C & D) | (C & E) | (D & E)) + w[59] + 0x8F1BBCDC; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[60] + 0xCA62C1D6; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[61] + 0xCA62C1D6; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[62] + 0xCA62C1D6; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[63] + 0xCA62C1D6; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[64] + 0xCA62C1D6; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[65] + 0xCA62C1D6; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[66] + 0xCA62C1D6; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[67] + 0xCA62C1D6; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[68] + 0xCA62C1D6; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[69] + 0xCA62C1D6; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[70] + 0xCA62C1D6; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[71] + 0xCA62C1D6; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[72] + 0xCA62C1D6; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[73] + 0xCA62C1D6; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[74] + 0xCA62C1D6; C = ((C << 30) | (C >>> 2)); E += ((A << 5) | (A >>> 27)) + (B ^ C ^ D) + w[75] + 0xCA62C1D6; B = ((B << 30) | (B >>> 2)); D += ((E << 5) | (E >>> 27)) + (A ^ B ^ C) + w[76] + 0xCA62C1D6; A = ((A << 30) | (A >>> 2)); C += ((D << 5) | (D >>> 27)) + (E ^ A ^ B) + w[77] + 0xCA62C1D6; E = ((E << 30) | (E >>> 2)); B += ((C << 5) | (C >>> 27)) + (D ^ E ^ A) + w[78] + 0xCA62C1D6; D = ((D << 30) | (D >>> 2)); A += ((B << 5) | (B >>> 27)) + (C ^ D ^ E) + w[79] + 0xCA62C1D6; C = ((C << 30) | (C >>> 2)); H0 += A; H1 += B; H2 += C; H3 += D; H4 += E; // debug(80, H0, H1, H2, H3, H4); } private static final String toHexString(byte[] b) { final String hexChar = "0123456789ABCDEF"; StringBuffer sb = new StringBuffer(); for (int i = 0; i < b.length; i++) { sb.append(hexChar.charAt((b[i] >> 4) & 0x0f)); sb.append(hexChar.charAt(b[i] & 0x0f)); } return sb.toString(); } public static void main(String[] args) { SHA1 sha = new SHA1(); byte[] dig1 = new byte[20]; byte[] dig2 = new byte[20]; byte[] dig3 = new byte[20]; /* * We do not specify a charset name for getBytes(), since we assume that * the JVM's default encoder maps the _used_ ASCII characters exactly as * getBytes("US-ASCII") would do. (Ah, yes, too lazy to catch the * exception that can be thrown by getBytes("US-ASCII")). Note: This has * no effect on the SHA-1 implementation, this is just for the following * test code. */ sha.update("abc".getBytes()); sha.digest(dig1); sha.update("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq".getBytes()); sha.digest(dig2); for (int i = 0; i < 1000000; i++) sha.update((byte) 'a'); sha.digest(dig3); String dig1_res = toHexString(dig1); String dig2_res = toHexString(dig2); String dig3_res = toHexString(dig3); String dig1_ref = "A9993E364706816ABA3E25717850C26C9CD0D89D"; String dig2_ref = "84983E441C3BD26EBAAE4AA1F95129E5E54670F1"; String dig3_ref = "34AA973CD4C4DAA4F61EEB2BDBAD27316534016F"; if (dig1_res.equals(dig1_ref)) System.out.println("SHA-1 Test 1 OK."); else System.out.println("SHA-1 Test 1 FAILED."); if (dig2_res.equals(dig2_ref)) System.out.println("SHA-1 Test 2 OK."); else System.out.println("SHA-1 Test 2 FAILED."); if (dig3_res.equals(dig3_ref)) System.out.println("SHA-1 Test 3 OK."); else System.out.println("SHA-1 Test 3 FAILED."); if (dig3_res.equals(dig3_ref)) System.out.println("SHA-1 Test 3 OK."); else System.out.println("SHA-1 Test 3 FAILED."); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy