stream.learner.MetaDataLearner Maven / Gradle / Ivy
/*
* streams library
*
* Copyright (C) 2011-2012 by Christian Bockermann, Hendrik Blom
*
* streams is a library, API and runtime environment for processing high
* volume data streams. It is composed of three submodules "stream-api",
* "stream-core" and "stream-runtime".
*
* The streams library (and its submodules) is free software: you can
* redistribute it and/or modify it under the terms of the
* GNU Affero General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* The stream.ai library (and its submodules) is distributed in the hope
* that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package stream.learner;
import java.io.Serializable;
import java.util.HashSet;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.Map;
import java.util.Set;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import stream.AbstractProcessor;
import stream.Data;
import stream.data.Statistics;
/**
* @author chris
*
*/
public class MetaDataLearner extends AbstractProcessor implements
MetaDataService {
static Logger log = LoggerFactory.getLogger(MetaDataLearner.class);
String[] keys = null;
final Set observed = new LinkedHashSet();
Map stats = new LinkedHashMap();
/**
* @return the keys
*/
public String[] getKeys() {
return keys;
}
/**
* @param keys
* the keys to set
*/
public void setKeys(String[] keys) {
this.keys = keys;
if (this.keys != null) {
for (String key : this.keys) {
observed.add(key);
}
}
}
/**
* @see stream.Processor#process(stream.Data)
*/
@Override
public Data process(Data input) {
if (keys == null) {
observed.addAll(input.keySet());
}
for (String key : observed) {
Serializable val = input.get(key);
if (val != null) {
Statistics st = stats.get(key);
if (st == null) {
log.debug(
"Creating new statistics object for attribute {}",
key);
st = new Statistics(key);
stats.put(key, st);
}
if (val instanceof Double) {
update(st, (Double) val);
} else {
update(st, val.toString());
}
}
}
return input;
}
protected Statistics update(Statistics st, Double value) {
Double min = st.get("minimum");
if (min == null)
min = value;
else
min = Math.min(min, value);
st.put("minimum", min);
Double max = st.get("maximum");
if (max == null)
max = value;
else
max = Math.max(max, value);
st.put("maximum", max);
st.add("sum", value);
st.add("count", 1.0d);
st.put("average", st.get("sum") / st.get("count"));
return st;
}
protected Statistics update(Statistics st, String value) {
st.add(value, 1.0d);
return st;
}
/**
* @see stream.learner.MetaDataService#getStatistics(java.lang.String)
*/
@Override
public Statistics getStatistics(String key) {
if (!stats.containsKey(key)) {
return null;
} else {
Statistics copy;
Statistics st = stats.get(key);
synchronized (st) {
copy = new Statistics(st);
}
return copy;
}
}
/**
* @see stream.learner.MetaDataService#getTopValues(java.lang.String)
*/
@Override
public Set getTopValues(String key) {
return new HashSet();
}
/**
* @see stream.service.Service#reset()
*/
@Override
public void reset() throws Exception {
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy