stream.io.SvmLightStream Maven / Gradle / Ivy
/*
* streams library
*
* Copyright (C) 2011-2012 by Christian Bockermann, Hendrik Blom
*
* streams is a library, API and runtime environment for processing high
* volume data streams. It is composed of three submodules "stream-api",
* "stream-core" and "stream-runtime".
*
* The streams library (and its submodules) is free software: you can
* redistribute it and/or modify it under the terms of the
* GNU Affero General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* The stream.ai library (and its submodules) is distributed in the hope
* that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package stream.io;
import java.io.InputStream;
import java.io.Serializable;
import java.util.HashMap;
import java.util.TreeSet;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import stream.Data;
import stream.annotations.Description;
import stream.data.DataFactory;
import stream.data.DataUtils;
import stream.data.vector.InputVector;
/**
* This class implements a simple reader to read data in the SVM light data
* format. The data is read from a URL and parsed into a Data instance.
*
* @author Christian Bockermann <[email protected]>
*
*/
@Description(group = "Data Stream.Sources")
public class SvmLightStream extends AbstractLineStream {
static Logger log = LoggerFactory.getLogger(SvmLightStream.class);
long lineNumber = 0;
boolean addSparseVector = true;
String sparseKey = null;
public SvmLightStream(SourceURL url) throws Exception {
super(url);
}
public SvmLightStream(SourceURL url, String sparseVectorKey)
throws Exception {
this(url);
this.setSparseKey(sparseVectorKey);
}
public SvmLightStream(InputStream in) throws Exception {
super(in);
}
/**
* @return the sparseKey
*/
public String getSparseKey() {
return sparseKey;
}
/**
* @param sparseKey
* the sparseKey to set
*/
public void setSparseKey(String sparseKey) {
if (sparseKey == null)
this.sparseKey = null;
else
this.sparseKey = sparseKey;
}
/**
* @see stream.io.AbstractStream#readNext(stream.Data)
*/
@Override
public Data readNext() throws Exception {
Data item = DataFactory.create();
if (limit > 0 && lineNumber > limit) {
return null;
}
String line = readLine();
if (line == null)
return null;
log.debug("line[{}]: {}", lineNumber, line);
while (line != null && !line.matches("^(-|\\+)?\\d(\\.\\d+)?\\s.*")) {
line = readLine();
}
if (line == null)
return null;
lineNumber++;
Data datum = parseLine(item, line);
if (sparseKey != null) {
log.debug("Adding sparse vector as key '{}'", sparseKey);
datum.put(sparseKey, readSparseVector(line));
} else
log.debug("No sparse key defined, not creating sparse vector!");
return datum;
}
public Data readSparseVector(Data item) throws Exception {
String line = readLine();
if (line == null)
return null;
log.debug("line[{}]: {}", lineNumber, line);
lineNumber++;
InputVector sp = readSparseVector(line);
item.put(sparseKey, sp);
return item;
}
/**
* This method parses a single line into a data item. The line is expected
* to match the format of the SVMlight data format.
*
* @param item
* @param line
* @return
* @throws Exception
*/
public static Data parseLine(Data item, String line, String sparseKey)
throws Exception {
int info = line.indexOf("#");
if (info > 0)
line = line.substring(0, info);
String[] token = line.split("\\s+");
item.put("@label", new Double(token[0]));
for (int i = 1; i < token.length; i++) {
String[] iv = token[i].split(":");
if (iv.length != 2) {
log.error("Failed to split token '{}' in line: ", token[i],
line);
return null;
} else {
item.put(iv[0], new Double(iv[1]));
}
}
if (sparseKey != null) {
HashMap pairs = new HashMap();
for (int i = 1; i < token.length; i++) {
String[] iv = token[i].split(":");
if (iv.length != 2) {
log.error("Failed to split token '{}' in line: ", token[i],
line);
return null;
} else {
pairs.put(Integer.parseInt(iv[0]),
Double.parseDouble(iv[1]));
}
}
item.put(sparseKey,
new InputVector(pairs, false, Double.parseDouble(token[0])));
}
return item;
}
public static Data parseLine(Data item, String line) throws Exception {
return parseLine(item, line, null);
}
public static InputVector readSparseVector(String line) throws Exception {
int info = line.indexOf("#");
if (info > 0)
line = line.substring(0, info);
String[] token = line.split("\\s+");
HashMap pairs = new HashMap();
for (int i = 1; i < token.length; i++) {
String[] iv = token[i].split(":");
if (iv.length != 2) {
log.error("Failed to split token '{}' in line: ", token[i],
line);
return null;
} else {
pairs.put(Integer.parseInt(iv[0]), Double.parseDouble(iv[1]));
}
}
return new InputVector(pairs, false, Double.parseDouble(token[0]));
}
public static InputVector createSparseVector(Data datum) {
if (datum.containsKey(".sparse-vector")) {
log.trace("Found existing sparse-vector object!");
return (InputVector) datum.get(".sparse-vector");
}
for (Serializable val : datum.values()) {
if (val instanceof InputVector) {
log.trace("Found existing sparse-vector object!");
return (InputVector) val;
}
}
TreeSet indexes = new TreeSet();
for (String key : datum.keySet()) {
Serializable val = datum.get(key);
if (!DataUtils.isAnnotation(key) && key.matches("\\d+")
&& val instanceof Double) {
log.debug("Found numeric feature {}", key);
indexes.add(key);
} else {
log.debug("Skipping non-numeric feature {} of type {}", key,
val.getClass());
}
}
double y = Double.NaN;
if (datum.containsKey("@label")) {
try {
y = (Double) datum.get("@label");
} catch (Exception e) {
y = Double.NaN;
}
}
// int[] idx = new int[ indexes.size() ];
// double[] vals = new double[ indexes.size() ];
HashMap pairs = new HashMap();
// int i = 0;
for (String key : indexes) {
// idx[i] = Integer.parseInt( key );
// vals[i] = (Double) datum.get( key );
// i++;
pairs.put((Integer) Integer.parseInt(key), (Double) datum.get(key));
}
// SparseVector vec = new SparseVector( idx, vals, y, false );
InputVector vec = new InputVector(pairs, false, y);
log.trace("SparseVector: {}", vec);
return vec;
}
/**
* @see stream.io.Stream#close()
*/
@Override
public void close() {
try {
reader.close();
} catch (Exception e) {
log.error("Failed to properly close reader: {}", e.getMessage());
if (log.isDebugEnabled())
e.printStackTrace();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy