stream.learner.evaluation.PredictionError Maven / Gradle / Ivy
/*
* streams library
*
* Copyright (C) 2011-2012 by Christian Bockermann, Hendrik Blom
*
* streams is a library, API and runtime environment for processing high
* volume data streams. It is composed of three submodules "stream-api",
* "stream-core" and "stream-runtime".
*
* The streams library (and its submodules) is free software: you can
* redistribute it and/or modify it under the terms of the
* GNU Affero General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* The stream.ai library (and its submodules) is distributed in the hope
* that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package stream.learner.evaluation;
import java.io.Serializable;
import java.util.LinkedHashMap;
import java.util.Map;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import stream.AbstractProcessor;
import stream.Data;
import stream.annotations.Description;
/**
*
* This class implements a generic prediction error evaluator. The prediction
* error(s) are added to the data item...
*
*
* @author Christian Bockermann <[email protected]>
*
*/
@Description(name = "PredictionError", group = "Data Stream.Mining.Evaluation")
public class PredictionError extends AbstractProcessor {
static Logger log = LoggerFactory.getLogger(PredictionError.class);
LossFunction loss = new ZeroOneLoss();
String prefix = "@error";
String label = "@label";
String[] learner;
Integer count = 0;
Integer every = 0;
Map> confusionMatrices = new LinkedHashMap>();
/**
* @return the prefix
*/
public String getPrefix() {
return prefix;
}
/**
* @param prefix
* the prefix to set
*/
public void setPrefix(String prefix) {
this.prefix = prefix;
}
/**
* @return the labels
*/
public String getLabel() {
return label;
}
/**
* @param labels
* the labels to set
*/
public void setLabel(String label) {
this.label = label;
}
/**
* @return the learners
*/
public String[] getLearner() {
return learner;
}
/**
* @param learners
* the learners to set
*/
public void setLearner(String[] learner) {
this.learner = learner;
}
/**
* @see stream.DataProcessor#process(stream.Data)
*/
@Override
public Data process(Data data) {
Serializable labelValue = data.get(label);
if (labelValue == null)
return data;
Map errors = new LinkedHashMap();
//
// if the user specified the learner names, we only check these...
//
if (learner != null) {
for (String classifier : learner) {
String key = Data.PREDICTION_PREFIX + ":" + classifier;
Serializable pred = data.get(key);
// First Element
if (pred == null)
continue;
Double error = loss.loss(labelValue, pred);
errors.put(prefix + classifier, error);
ConfusionMatrix matrix = this.confusionMatrices
.get(classifier);
if (matrix == null) {
matrix = new ConfusionMatrix();
confusionMatrices.put(classifier, matrix);
}
matrix.add(labelValue, pred);
}
} else {
//
// if no learner names/refs have been specified, we compute
// prediction errors for all predictions in the data item
//
for (String key : data.keySet()) {
if (key.startsWith(Data.PREDICTION_PREFIX)) {
Serializable pred = data.get(key);
String name = key
.substring(Data.PREDICTION_PREFIX.length());
String errKey = key.replaceFirst(Data.PREDICTION_PREFIX,
prefix);
if (pred == null)
continue;
Double error = loss.loss(labelValue, pred);
errors.put(errKey, error);
ConfusionMatrix matrix = this.confusionMatrices
.get(name);
if (matrix == null) {
matrix = new ConfusionMatrix();
confusionMatrices.put(name, matrix);
}
matrix.add(labelValue, pred);
}
}
}
for (String err : errors.keySet()) {
data.put(err, errors.get(err));
}
count++;
if (every > 0 && count % every == 0) {
for (String learner : confusionMatrices.keySet()) {
log.info(confusionMatrices.get(learner).toString());
}
}
return data;
}
/**
* @see stream.AbstractProcessor#finish()
*/
@Override
public void finish() throws Exception {
super.finish();
for (String learner : confusionMatrices.keySet()) {
log.info(confusionMatrices.get(learner).toString());
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy