![JAR search and dependency download from the Maven repository](/logo.png)
stream.learner.Prediction Maven / Gradle / Ivy
The newest version!
/*
* streams library
*
* Copyright (C) 2011-2014 by Christian Bockermann, Hendrik Blom
*
* streams is a library, API and runtime environment for processing high
* volume data streams. It is composed of three submodules "stream-api",
* "stream-core" and "stream-runtime".
*
* The streams library (and its submodules) is free software: you can
* redistribute it and/or modify it under the terms of the
* GNU Affero General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* The stream.ai library (and its submodules) is distributed in the hope
* that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*/
package stream.learner;
import java.io.Serializable;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import stream.Data;
import stream.Processor;
import stream.annotations.Description;
/**
* @author chris
*
*/
@Description(name = "Prediction", group = "Data Stream.Mining")
public class Prediction implements Processor {
static Logger log = LoggerFactory.getLogger(Prediction.class);
PredictionService predictionService;
public void setClassifier(PredictionService predService) {
setLearner(predService);
}
public void setLearner(PredictionService predService) {
log.info("Lerner injected: {}", predService);
this.predictionService = predService;
}
/**
* @see stream.DataProcessor#process(stream.Data)
*/
@Override
public Data process(Data data) {
if (predictionService != null) {
try {
String key = predictionService.getName();
Serializable pred = predictionService.predict(data);
if (key != null && !key.startsWith(Data.PREDICTION_PREFIX)) {
key = Data.PREDICTION_PREFIX + ":" + key;
} else {
key = "@prediction";
}
data.put(key, pred);
return data;
} catch (Exception e) {
log.error("Failed to apply prediction: {}", e.getMessage());
e.printStackTrace();
}
} else {
log.error("No PredictionService has been injected!");
}
return data;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy