org.kie.pmml.models.clustering.model.KiePMMLCompareFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of kie-pmml-models-clustering-model Show documentation
Show all versions of kie-pmml-models-clustering-model Show documentation
KiePMML Model for Clustering implementation
The newest version!
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.kie.pmml.models.clustering.model;
import org.kie.pmml.api.enums.Named;
public enum KiePMMLCompareFunction implements Named {
ABS_DIFF("absDiff"),
GAUSS_SIM("gaussSim"),
DELTA("delta"),
EQUAL("equal"),
TABLE("table");
private final String name;
KiePMMLCompareFunction(String name) {
this.name = name;
}
@Override
public String getName() {
return name;
}
public double apply(KiePMMLClusteringField field, double x, double y) {
switch (this) {
case ABS_DIFF:
return absDiff(x, y);
case GAUSS_SIM:
return gaussSim(x, y, field.getSimilarityScale().orElse(1.0));
case DELTA:
return delta(x, y);
case EQUAL:
return equal(x, y);
case TABLE:
throw new UnsupportedOperationException("\"table\" compare function not implemented");
}
throw new IllegalStateException("Unknown compare function: " + this);
}
static double absDiff(double x, double y) {
return Math.abs(x - y);
}
static double gaussSim(double x, double y, double similarityScale) {
return Math.exp(NEGATIVE_LN_2 * Math.pow(x - y, 2.0) / Math.pow(similarityScale, 2.0));
}
static double delta(double x, double y) {
return doubleEquals(x, y) ? 0.0 : 1.0;
}
static double equal(double x, double y) {
return doubleEquals(x, y) ? 1.0 : 0.0;
}
private static boolean doubleEquals(double x, double y) {
return Double.compare(x, y) == 0;
}
private static final double NEGATIVE_LN_2 = -1.0 * Math.log(2.0);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy