org.kie.pmml.models.clustering.model.KiePMMLAggregateFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of kie-pmml-models-clustering-model Show documentation
Show all versions of kie-pmml-models-clustering-model Show documentation
KiePMML Model for Clustering implementation
/*
* Copyright 2021 Red Hat, Inc. and/or its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.kie.pmml.models.clustering.model;
import java.util.List;
import org.kie.pmml.api.enums.Named;
public enum KiePMMLAggregateFunction implements Named {
EUCLIDEAN("euclidean"),
SQUARED_EUCLIDEAN("squaredEuclidean"),
CHEBYCHEV("chebychev"),
CITY_BLOCK("cityBlock"),
MINKOWSKI("minkowski"),
SIMPLE_MATCHING("simpleMatching"),
JACCARD("jaccard"),
TANIMOTO("tanimoto"),
BINARY_SIMILARITY("binarySimilarity");
private final String name;
KiePMMLAggregateFunction(String name) {
this.name = name;
}
@Override
public String getName() {
return name;
}
public double apply(List fields, KiePMMLCompareFunction defaultCompare, Double[] inputs, double[] seeds, double adjust) {
switch (this) {
case EUCLIDEAN:
return euclidean(fields, defaultCompare, inputs, seeds, adjust);
case SQUARED_EUCLIDEAN:
return squaredEuclidean(fields, defaultCompare, inputs, seeds, adjust);
case CHEBYCHEV:
case CITY_BLOCK:
case MINKOWSKI:
case SIMPLE_MATCHING:
case JACCARD:
case TANIMOTO:
case BINARY_SIMILARITY:
throw new UnsupportedOperationException(this + " aggregate function not implemented");
}
throw new IllegalStateException("Unknown aggregate function: " + this);
}
static double euclidean(List fields, KiePMMLCompareFunction defaultCompare, Double[] inputs, double[] seeds, double adjust) {
return Math.sqrt(squaredEuclidean(fields, defaultCompare, inputs, seeds, adjust));
}
static double squaredEuclidean(List fields, KiePMMLCompareFunction defaultCompare, Double[] inputs, double[] seeds, double adjust) {
double sum = 0.0;
for (int i = 0; i < fields.size(); i++) {
if (inputs[i] != null) {
KiePMMLClusteringField field = fields.get(i);
double weight = field.getFieldWeight();
KiePMMLCompareFunction compare = field.getCompareFunction().orElse(defaultCompare);
sum += weight * Math.pow(compare.apply(field, inputs[i], seeds[i]), 2.0);
}
}
return sum * adjust;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy