org.kie.pmml.models.clustering.model.KiePMMLClusteringModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of kie-pmml-models-clustering-model Show documentation
Show all versions of kie-pmml-models-clustering-model Show documentation
KiePMML Model for Clustering implementation
/*
* Copyright 2020 Red Hat, Inc. and/or its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.kie.pmml.models.clustering.model;
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import org.kie.pmml.api.enums.Named;
import org.kie.pmml.commons.model.KiePMMLModel;
public abstract class KiePMMLClusteringModel extends KiePMMLModel {
public enum ModelClass implements Named {
CENTER_BASED("centerBased"),
DISTRIBUTION_BASED("distributionBased");
private final String name;
ModelClass(String name) {
this.name = name;
}
@Override
public String getName() {
return name;
}
}
protected ModelClass modelClass;
protected List clusters = new ArrayList<>();
protected List clusteringFields = new ArrayList<>();
protected KiePMMLComparisonMeasure comparisonMeasure;
protected KiePMMLMissingValueWeights missingValueWeights;
protected KiePMMLClusteringModel(String modelName) {
super(modelName, Collections.emptyList());
}
@Override
public Object evaluate(final Object knowledgeBase, final Map requestData) {
double adjustmentFactor = computeAdjustmentFactor(requestData);
Double[] inputs = new Double[clusteringFields.size()];
for (int i = 0; i < clusteringFields.size(); i++) {
String fieldName = clusteringFields.get(i).getField();
inputs[i] = requestData.containsKey(fieldName) ? (Double) requestData.get(fieldName) : null;
}
double[] aggregates = new double[clusters.size()];
for (int i = 0; i < clusters.size(); i++) {
aggregates[i] = comparisonMeasure.getAggregateFunction()
.apply(clusteringFields, comparisonMeasure.getCompareFunction(), inputs, clusters.get(i).getValuesArray(), adjustmentFactor);
}
final int selectedIndex = findMinIndex(aggregates);
final KiePMMLCluster selectedCluster = clusters.get(selectedIndex);
final int selectedEntityId = selectedIndex + 1;
selectedCluster.getName().ifPresent(this::setPredictedDisplayValue);
setEntityId(selectedEntityId);
setAffinity(aggregates[selectedIndex]);
return selectedCluster.getId().orElseGet(() -> Integer.toString(selectedEntityId));
}
@Override
public LinkedHashMap getProbabilityResultMap() {
return new LinkedHashMap<>();
}
private double computeAdjustmentFactor(Map requestData) {
double numerator = 1.0;
double denumerator = 1.0;
for (int i = 0; i < clusteringFields.size(); i++) {
double weight = missingValueWeightFor(i);
double nonMissingFactor = requestData.containsKey(clusteringFields.get(i).getField()) ? 1.0 : 0.0;
numerator *= weight;
denumerator *= weight * nonMissingFactor;
}
return numerator / denumerator;
}
private int findMinIndex(double[] values) {
int minIndex = 0;
double min = values[minIndex];
for (int i = 1; i < values.length; i++) {
if (values[i] < min) {
minIndex = i;
min = values[i];
}
}
return minIndex;
}
private double missingValueWeightFor(int fieldNumber) {
return Optional.ofNullable(missingValueWeights)
.map(KiePMMLMissingValueWeights::getValues)
.filter(v -> v.size() >= fieldNumber)
.map(v -> v.get(fieldNumber))
.orElse(1.0);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy