com.google.common.util.concurrent.MoreExecutors Maven / Gradle / Ivy
/*
* Copyright (C) 2007 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.util.concurrent;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import com.google.common.annotations.Beta;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Supplier;
import com.google.common.base.Throwables;
import com.google.common.collect.Lists;
import com.google.common.collect.Queues;
import com.google.common.util.concurrent.ForwardingListenableFuture.SimpleForwardingListenableFuture;
import java.lang.reflect.InvocationTargetException;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.Callable;
import java.util.concurrent.Delayed;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Executor;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.ThreadPoolExecutor.CallerRunsPolicy;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* Factory and utility methods for {@link java.util.concurrent.Executor}, {@link
* ExecutorService}, and {@link ThreadFactory}.
*
* @author Eric Fellheimer
* @author Kyle Littlefield
* @author Justin Mahoney
* @since 3.0
*/
public final class MoreExecutors {
private MoreExecutors() {}
/**
* Converts the given ThreadPoolExecutor into an ExecutorService that exits
* when the application is complete. It does so by using daemon threads and
* adding a shutdown hook to wait for their completion.
*
* This is mainly for fixed thread pools.
* See {@link Executors#newFixedThreadPool(int)}.
*
* @param executor the executor to modify to make sure it exits when the
* application is finished
* @param terminationTimeout how long to wait for the executor to
* finish before terminating the JVM
* @param timeUnit unit of time for the time parameter
* @return an unmodifiable version of the input which will not hang the JVM
*/
@Beta
public static ExecutorService getExitingExecutorService(
ThreadPoolExecutor executor, long terminationTimeout, TimeUnit timeUnit) {
return new Application()
.getExitingExecutorService(executor, terminationTimeout, timeUnit);
}
/**
* Converts the given ScheduledThreadPoolExecutor into a
* ScheduledExecutorService that exits when the application is complete. It
* does so by using daemon threads and adding a shutdown hook to wait for
* their completion.
*
*
This is mainly for fixed thread pools.
* See {@link Executors#newScheduledThreadPool(int)}.
*
* @param executor the executor to modify to make sure it exits when the
* application is finished
* @param terminationTimeout how long to wait for the executor to
* finish before terminating the JVM
* @param timeUnit unit of time for the time parameter
* @return an unmodifiable version of the input which will not hang the JVM
*/
@Beta
public static ScheduledExecutorService getExitingScheduledExecutorService(
ScheduledThreadPoolExecutor executor, long terminationTimeout, TimeUnit timeUnit) {
return new Application()
.getExitingScheduledExecutorService(executor, terminationTimeout, timeUnit);
}
/**
* Add a shutdown hook to wait for thread completion in the given
* {@link ExecutorService service}. This is useful if the given service uses
* daemon threads, and we want to keep the JVM from exiting immediately on
* shutdown, instead giving these daemon threads a chance to terminate
* normally.
* @param service ExecutorService which uses daemon threads
* @param terminationTimeout how long to wait for the executor to finish
* before terminating the JVM
* @param timeUnit unit of time for the time parameter
*/
@Beta
public static void addDelayedShutdownHook(
ExecutorService service, long terminationTimeout, TimeUnit timeUnit) {
new Application()
.addDelayedShutdownHook(service, terminationTimeout, timeUnit);
}
/**
* Converts the given ThreadPoolExecutor into an ExecutorService that exits
* when the application is complete. It does so by using daemon threads and
* adding a shutdown hook to wait for their completion.
*
*
This method waits 120 seconds before continuing with JVM termination,
* even if the executor has not finished its work.
*
*
This is mainly for fixed thread pools.
* See {@link Executors#newFixedThreadPool(int)}.
*
* @param executor the executor to modify to make sure it exits when the
* application is finished
* @return an unmodifiable version of the input which will not hang the JVM
*/
@Beta
public static ExecutorService getExitingExecutorService(ThreadPoolExecutor executor) {
return new Application().getExitingExecutorService(executor);
}
/**
* Converts the given ThreadPoolExecutor into a ScheduledExecutorService that
* exits when the application is complete. It does so by using daemon threads
* and adding a shutdown hook to wait for their completion.
*
*
This method waits 120 seconds before continuing with JVM termination,
* even if the executor has not finished its work.
*
*
This is mainly for fixed thread pools.
* See {@link Executors#newScheduledThreadPool(int)}.
*
* @param executor the executor to modify to make sure it exits when the
* application is finished
* @return an unmodifiable version of the input which will not hang the JVM
*/
@Beta
public static ScheduledExecutorService getExitingScheduledExecutorService(
ScheduledThreadPoolExecutor executor) {
return new Application().getExitingScheduledExecutorService(executor);
}
/** Represents the current application to register shutdown hooks. */
@VisibleForTesting static class Application {
final ExecutorService getExitingExecutorService(
ThreadPoolExecutor executor, long terminationTimeout, TimeUnit timeUnit) {
useDaemonThreadFactory(executor);
ExecutorService service = Executors.unconfigurableExecutorService(executor);
addDelayedShutdownHook(service, terminationTimeout, timeUnit);
return service;
}
final ScheduledExecutorService getExitingScheduledExecutorService(
ScheduledThreadPoolExecutor executor, long terminationTimeout, TimeUnit timeUnit) {
useDaemonThreadFactory(executor);
ScheduledExecutorService service = Executors.unconfigurableScheduledExecutorService(executor);
addDelayedShutdownHook(service, terminationTimeout, timeUnit);
return service;
}
final void addDelayedShutdownHook(
final ExecutorService service, final long terminationTimeout, final TimeUnit timeUnit) {
checkNotNull(service);
checkNotNull(timeUnit);
addShutdownHook(MoreExecutors.newThread("DelayedShutdownHook-for-" + service, new Runnable() {
@Override
public void run() {
try {
// We'd like to log progress and failures that may arise in the
// following code, but unfortunately the behavior of logging
// is undefined in shutdown hooks.
// This is because the logging code installs a shutdown hook of its
// own. See Cleaner class inside {@link LogManager}.
service.shutdown();
service.awaitTermination(terminationTimeout, timeUnit);
} catch (InterruptedException ignored) {
// We're shutting down anyway, so just ignore.
}
}
}));
}
final ExecutorService getExitingExecutorService(ThreadPoolExecutor executor) {
return getExitingExecutorService(executor, 120, TimeUnit.SECONDS);
}
final ScheduledExecutorService getExitingScheduledExecutorService(
ScheduledThreadPoolExecutor executor) {
return getExitingScheduledExecutorService(executor, 120, TimeUnit.SECONDS);
}
@VisibleForTesting void addShutdownHook(Thread hook) {
Runtime.getRuntime().addShutdownHook(hook);
}
}
private static void useDaemonThreadFactory(ThreadPoolExecutor executor) {
executor.setThreadFactory(new ThreadFactoryBuilder()
.setDaemon(true)
.setThreadFactory(executor.getThreadFactory())
.build());
}
/**
* Creates an executor service that runs each task in the thread
* that invokes {@code execute/submit}, as in {@link CallerRunsPolicy} This
* applies both to individually submitted tasks and to collections of tasks
* submitted via {@code invokeAll} or {@code invokeAny}. In the latter case,
* tasks will run serially on the calling thread. Tasks are run to
* completion before a {@code Future} is returned to the caller (unless the
* executor has been shutdown).
*
*
Although all tasks are immediately executed in the thread that
* submitted the task, this {@code ExecutorService} imposes a small
* locking overhead on each task submission in order to implement shutdown
* and termination behavior.
*
*
The implementation deviates from the {@code ExecutorService}
* specification with regards to the {@code shutdownNow} method. First,
* "best-effort" with regards to canceling running tasks is implemented
* as "no-effort". No interrupts or other attempts are made to stop
* threads executing tasks. Second, the returned list will always be empty,
* as any submitted task is considered to have started execution.
* This applies also to tasks given to {@code invokeAll} or {@code invokeAny}
* which are pending serial execution, even the subset of the tasks that
* have not yet started execution. It is unclear from the
* {@code ExecutorService} specification if these should be included, and
* it's much easier to implement the interpretation that they not be.
* Finally, a call to {@code shutdown} or {@code shutdownNow} may result
* in concurrent calls to {@code invokeAll/invokeAny} throwing
* RejectedExecutionException, although a subset of the tasks may already
* have been executed.
*
* @since 10.0 (mostly source-compatible since 3.0)
* @deprecated Use {@link #directExecutor()} if you only require an {@link Executor} and
* {@link #newDirectExecutorService()} if you need a {@link ListeningExecutorService}.
*/
@Deprecated public static ListeningExecutorService sameThreadExecutor() {
return new DirectExecutorService();
}
// See sameThreadExecutor javadoc for behavioral notes.
private static class DirectExecutorService
extends AbstractListeningExecutorService {
/**
* Lock used whenever accessing the state variables
* (runningTasks, shutdown, terminationCondition) of the executor
*/
private final Lock lock = new ReentrantLock();
/** Signaled after the executor is shutdown and running tasks are done */
private final Condition termination = lock.newCondition();
/*
* Conceptually, these two variables describe the executor being in
* one of three states:
* - Active: shutdown == false
* - Shutdown: runningTasks > 0 and shutdown == true
* - Terminated: runningTasks == 0 and shutdown == true
*/
private int runningTasks = 0;
private boolean shutdown = false;
@Override
public void execute(Runnable command) {
startTask();
try {
command.run();
} finally {
endTask();
}
}
@Override
public boolean isShutdown() {
lock.lock();
try {
return shutdown;
} finally {
lock.unlock();
}
}
@Override
public void shutdown() {
lock.lock();
try {
shutdown = true;
} finally {
lock.unlock();
}
}
// See sameThreadExecutor javadoc for unusual behavior of this method.
@Override
public List shutdownNow() {
shutdown();
return Collections.emptyList();
}
@Override
public boolean isTerminated() {
lock.lock();
try {
return shutdown && runningTasks == 0;
} finally {
lock.unlock();
}
}
@Override
public boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
lock.lock();
try {
for (;;) {
if (isTerminated()) {
return true;
} else if (nanos <= 0) {
return false;
} else {
nanos = termination.awaitNanos(nanos);
}
}
} finally {
lock.unlock();
}
}
/**
* Checks if the executor has been shut down and increments the running
* task count.
*
* @throws RejectedExecutionException if the executor has been previously
* shutdown
*/
private void startTask() {
lock.lock();
try {
if (isShutdown()) {
throw new RejectedExecutionException("Executor already shutdown");
}
runningTasks++;
} finally {
lock.unlock();
}
}
/**
* Decrements the running task count.
*/
private void endTask() {
lock.lock();
try {
runningTasks--;
if (isTerminated()) {
termination.signalAll();
}
} finally {
lock.unlock();
}
}
}
/**
* Creates an executor service that runs each task in the thread
* that invokes {@code execute/submit}, as in {@link CallerRunsPolicy} This
* applies both to individually submitted tasks and to collections of tasks
* submitted via {@code invokeAll} or {@code invokeAny}. In the latter case,
* tasks will run serially on the calling thread. Tasks are run to
* completion before a {@code Future} is returned to the caller (unless the
* executor has been shutdown).
*
* Although all tasks are immediately executed in the thread that
* submitted the task, this {@code ExecutorService} imposes a small
* locking overhead on each task submission in order to implement shutdown
* and termination behavior.
*
*
The implementation deviates from the {@code ExecutorService}
* specification with regards to the {@code shutdownNow} method. First,
* "best-effort" with regards to canceling running tasks is implemented
* as "no-effort". No interrupts or other attempts are made to stop
* threads executing tasks. Second, the returned list will always be empty,
* as any submitted task is considered to have started execution.
* This applies also to tasks given to {@code invokeAll} or {@code invokeAny}
* which are pending serial execution, even the subset of the tasks that
* have not yet started execution. It is unclear from the
* {@code ExecutorService} specification if these should be included, and
* it's much easier to implement the interpretation that they not be.
* Finally, a call to {@code shutdown} or {@code shutdownNow} may result
* in concurrent calls to {@code invokeAll/invokeAny} throwing
* RejectedExecutionException, although a subset of the tasks may already
* have been executed.
*
* @since 18.0 (present as MoreExecutors.sameThreadExecutor() since 10.0)
*/
public static ListeningExecutorService newDirectExecutorService() {
return new DirectExecutorService();
}
/**
* Returns an {@link Executor} that runs each task in the thread that invokes
* {@link Executor#execute execute}, as in {@link CallerRunsPolicy}.
*
*
This instance is equivalent to:
{@code
* final class DirectExecutor implements Executor {
* public void execute(Runnable r) {
* r.run();
* }
* }}
*
* This should be preferred to {@link #newDirectExecutorService()} because the implementing the
* {@link ExecutorService} subinterface necessitates significant performance overhead.
*
* @since 18.0
*/
public static Executor directExecutor() {
return DirectExecutor.INSTANCE;
}
/** See {@link #directExecutor} for behavioral notes. */
private enum DirectExecutor implements Executor {
INSTANCE;
@Override public void execute(Runnable command) {
command.run();
}
}
/**
* Creates an {@link ExecutorService} whose {@code submit} and {@code
* invokeAll} methods submit {@link ListenableFutureTask} instances to the
* given delegate executor. Those methods, as well as {@code execute} and
* {@code invokeAny}, are implemented in terms of calls to {@code
* delegate.execute}. All other methods are forwarded unchanged to the
* delegate. This implies that the returned {@code ListeningExecutorService}
* never calls the delegate's {@code submit}, {@code invokeAll}, and {@code
* invokeAny} methods, so any special handling of tasks must be implemented in
* the delegate's {@code execute} method or by wrapping the returned {@code
* ListeningExecutorService}.
*
*
If the delegate executor was already an instance of {@code
* ListeningExecutorService}, it is returned untouched, and the rest of this
* documentation does not apply.
*
* @since 10.0
*/
public static ListeningExecutorService listeningDecorator(
ExecutorService delegate) {
return (delegate instanceof ListeningExecutorService)
? (ListeningExecutorService) delegate
: (delegate instanceof ScheduledExecutorService)
? new ScheduledListeningDecorator((ScheduledExecutorService) delegate)
: new ListeningDecorator(delegate);
}
/**
* Creates a {@link ScheduledExecutorService} whose {@code submit} and {@code
* invokeAll} methods submit {@link ListenableFutureTask} instances to the
* given delegate executor. Those methods, as well as {@code execute} and
* {@code invokeAny}, are implemented in terms of calls to {@code
* delegate.execute}. All other methods are forwarded unchanged to the
* delegate. This implies that the returned {@code
* ListeningScheduledExecutorService} never calls the delegate's {@code
* submit}, {@code invokeAll}, and {@code invokeAny} methods, so any special
* handling of tasks must be implemented in the delegate's {@code execute}
* method or by wrapping the returned {@code
* ListeningScheduledExecutorService}.
*
*
If the delegate executor was already an instance of {@code
* ListeningScheduledExecutorService}, it is returned untouched, and the rest
* of this documentation does not apply.
*
* @since 10.0
*/
public static ListeningScheduledExecutorService listeningDecorator(
ScheduledExecutorService delegate) {
return (delegate instanceof ListeningScheduledExecutorService)
? (ListeningScheduledExecutorService) delegate
: new ScheduledListeningDecorator(delegate);
}
private static class ListeningDecorator
extends AbstractListeningExecutorService {
private final ExecutorService delegate;
ListeningDecorator(ExecutorService delegate) {
this.delegate = checkNotNull(delegate);
}
@Override
public boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException {
return delegate.awaitTermination(timeout, unit);
}
@Override
public boolean isShutdown() {
return delegate.isShutdown();
}
@Override
public boolean isTerminated() {
return delegate.isTerminated();
}
@Override
public void shutdown() {
delegate.shutdown();
}
@Override
public List shutdownNow() {
return delegate.shutdownNow();
}
@Override
public void execute(Runnable command) {
delegate.execute(command);
}
}
private static class ScheduledListeningDecorator
extends ListeningDecorator implements ListeningScheduledExecutorService {
@SuppressWarnings("hiding")
final ScheduledExecutorService delegate;
ScheduledListeningDecorator(ScheduledExecutorService delegate) {
super(delegate);
this.delegate = checkNotNull(delegate);
}
@Override
public ListenableScheduledFuture> schedule(
Runnable command, long delay, TimeUnit unit) {
ListenableFutureTask task =
ListenableFutureTask.create(command, null);
ScheduledFuture> scheduled = delegate.schedule(task, delay, unit);
return new ListenableScheduledTask(task, scheduled);
}
@Override
public ListenableScheduledFuture schedule(
Callable callable, long delay, TimeUnit unit) {
ListenableFutureTask task = ListenableFutureTask.create(callable);
ScheduledFuture> scheduled = delegate.schedule(task, delay, unit);
return new ListenableScheduledTask(task, scheduled);
}
@Override
public ListenableScheduledFuture> scheduleAtFixedRate(
Runnable command, long initialDelay, long period, TimeUnit unit) {
NeverSuccessfulListenableFutureTask task =
new NeverSuccessfulListenableFutureTask(command);
ScheduledFuture> scheduled =
delegate.scheduleAtFixedRate(task, initialDelay, period, unit);
return new ListenableScheduledTask(task, scheduled);
}
@Override
public ListenableScheduledFuture> scheduleWithFixedDelay(
Runnable command, long initialDelay, long delay, TimeUnit unit) {
NeverSuccessfulListenableFutureTask task =
new NeverSuccessfulListenableFutureTask(command);
ScheduledFuture> scheduled =
delegate.scheduleWithFixedDelay(task, initialDelay, delay, unit);
return new ListenableScheduledTask(task, scheduled);
}
private static final class ListenableScheduledTask
extends SimpleForwardingListenableFuture
implements ListenableScheduledFuture {
private final ScheduledFuture> scheduledDelegate;
public ListenableScheduledTask(
ListenableFuture listenableDelegate,
ScheduledFuture> scheduledDelegate) {
super(listenableDelegate);
this.scheduledDelegate = scheduledDelegate;
}
@Override
public boolean cancel(boolean mayInterruptIfRunning) {
boolean cancelled = super.cancel(mayInterruptIfRunning);
if (cancelled) {
// Unless it is cancelled, the delegate may continue being scheduled
scheduledDelegate.cancel(mayInterruptIfRunning);
// TODO(user): Cancel "this" if "scheduledDelegate" is cancelled.
}
return cancelled;
}
@Override
public long getDelay(TimeUnit unit) {
return scheduledDelegate.getDelay(unit);
}
@Override
public int compareTo(Delayed other) {
return scheduledDelegate.compareTo(other);
}
}
private static final class NeverSuccessfulListenableFutureTask
extends AbstractFuture
implements Runnable {
private final Runnable delegate;
public NeverSuccessfulListenableFutureTask(Runnable delegate) {
this.delegate = checkNotNull(delegate);
}
@Override public void run() {
try {
delegate.run();
} catch (Throwable t) {
setException(t);
throw Throwables.propagate(t);
}
}
}
}
/*
* This following method is a modified version of one found in
* http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/test/tck/AbstractExecutorServiceTest.java?revision=1.30
* which contained the following notice:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
* Other contributors include Andrew Wright, Jeffrey Hayes,
* Pat Fisher, Mike Judd.
*/
/**
* An implementation of {@link ExecutorService#invokeAny} for {@link ListeningExecutorService}
* implementations.
*/ static T invokeAnyImpl(ListeningExecutorService executorService,
Collection extends Callable> tasks, boolean timed, long nanos)
throws InterruptedException, ExecutionException, TimeoutException {
checkNotNull(executorService);
int ntasks = tasks.size();
checkArgument(ntasks > 0);
List> futures = Lists.newArrayListWithCapacity(ntasks);
BlockingQueue> futureQueue = Queues.newLinkedBlockingQueue();
// For efficiency, especially in executors with limited
// parallelism, check to see if previously submitted tasks are
// done before submitting more of them. This interleaving
// plus the exception mechanics account for messiness of main
// loop.
try {
// Record exceptions so that if we fail to obtain any
// result, we can throw the last exception we got.
ExecutionException ee = null;
long lastTime = timed ? System.nanoTime() : 0;
Iterator extends Callable> it = tasks.iterator();
futures.add(submitAndAddQueueListener(executorService, it.next(), futureQueue));
--ntasks;
int active = 1;
for (;;) {
Future f = futureQueue.poll();
if (f == null) {
if (ntasks > 0) {
--ntasks;
futures.add(submitAndAddQueueListener(executorService, it.next(), futureQueue));
++active;
} else if (active == 0) {
break;
} else if (timed) {
f = futureQueue.poll(nanos, TimeUnit.NANOSECONDS);
if (f == null) {
throw new TimeoutException();
}
long now = System.nanoTime();
nanos -= now - lastTime;
lastTime = now;
} else {
f = futureQueue.take();
}
}
if (f != null) {
--active;
try {
return f.get();
} catch (ExecutionException eex) {
ee = eex;
} catch (RuntimeException rex) {
ee = new ExecutionException(rex);
}
}
}
if (ee == null) {
ee = new ExecutionException(null);
}
throw ee;
} finally {
for (Future f : futures) {
f.cancel(true);
}
}
}
/**
* Submits the task and adds a listener that adds the future to {@code queue} when it completes.
*/
private static ListenableFuture submitAndAddQueueListener(
ListeningExecutorService executorService, Callable task,
final BlockingQueue> queue) {
final ListenableFuture future = executorService.submit(task);
future.addListener(new Runnable() {
@Override public void run() {
queue.add(future);
}
}, directExecutor());
return future;
}
/**
* Returns a default thread factory used to create new threads.
*
* On AppEngine, returns {@code ThreadManager.currentRequestThreadFactory()}.
* Otherwise, returns {@link Executors#defaultThreadFactory()}.
*
* @since 14.0
*/
@Beta
public static ThreadFactory platformThreadFactory() {
if (!isAppEngine()) {
return Executors.defaultThreadFactory();
}
try {
return (ThreadFactory) Class.forName("com.google.appengine.api.ThreadManager")
.getMethod("currentRequestThreadFactory")
.invoke(null);
} catch (IllegalAccessException e) {
throw new RuntimeException("Couldn't invoke ThreadManager.currentRequestThreadFactory", e);
} catch (ClassNotFoundException e) {
throw new RuntimeException("Couldn't invoke ThreadManager.currentRequestThreadFactory", e);
} catch (NoSuchMethodException e) {
throw new RuntimeException("Couldn't invoke ThreadManager.currentRequestThreadFactory", e);
} catch (InvocationTargetException e) {
throw Throwables.propagate(e.getCause());
}
}
private static boolean isAppEngine() {
if (System.getProperty("com.google.appengine.runtime.environment") == null) {
return false;
}
try {
// If the current environment is null, we're not inside AppEngine.
return Class.forName("com.google.apphosting.api.ApiProxy")
.getMethod("getCurrentEnvironment")
.invoke(null) != null;
} catch (ClassNotFoundException e) {
// If ApiProxy doesn't exist, we're not on AppEngine at all.
return false;
} catch (InvocationTargetException e) {
// If ApiProxy throws an exception, we're not in a proper AppEngine environment.
return false;
} catch (IllegalAccessException e) {
// If the method isn't accessible, we're not on a supported version of AppEngine;
return false;
} catch (NoSuchMethodException e) {
// If the method doesn't exist, we're not on a supported version of AppEngine;
return false;
}
}
/**
* Creates a thread using {@link #platformThreadFactory}, and sets its name to {@code name}
* unless changing the name is forbidden by the security manager.
*/
static Thread newThread(String name, Runnable runnable) {
checkNotNull(name);
checkNotNull(runnable);
Thread result = platformThreadFactory().newThread(runnable);
try {
result.setName(name);
} catch (SecurityException e) {
// OK if we can't set the name in this environment.
}
return result;
}
// TODO(user): provide overloads for ListeningExecutorService? ListeningScheduledExecutorService?
// TODO(user): provide overloads that take constant strings? Functions to
// calculate names?
/**
* Creates an {@link Executor} that renames the {@link Thread threads} that its tasks run in.
*
* The names are retrieved from the {@code nameSupplier} on the thread that is being renamed
* right before each task is run. The renaming is best effort, if a {@link SecurityManager}
* prevents the renaming then it will be skipped but the tasks will still execute.
*
*
* @param executor The executor to decorate
* @param nameSupplier The source of names for each task
*/
static Executor renamingDecorator(final Executor executor, final Supplier nameSupplier) {
checkNotNull(executor);
checkNotNull(nameSupplier);
if (isAppEngine()) {
// AppEngine doesn't support thread renaming, so don't even try
return executor;
}
return new Executor() {
@Override public void execute(Runnable command) {
executor.execute(Callables.threadRenaming(command, nameSupplier));
}
};
}
/**
* Creates an {@link ExecutorService} that renames the {@link Thread threads} that its tasks run
* in.
*
* The names are retrieved from the {@code nameSupplier} on the thread that is being renamed
* right before each task is run. The renaming is best effort, if a {@link SecurityManager}
* prevents the renaming then it will be skipped but the tasks will still execute.
*
*
* @param service The executor to decorate
* @param nameSupplier The source of names for each task
*/
static ExecutorService renamingDecorator(final ExecutorService service,
final Supplier nameSupplier) {
checkNotNull(service);
checkNotNull(nameSupplier);
if (isAppEngine()) {
// AppEngine doesn't support thread renaming, so don't even try.
return service;
}
return new WrappingExecutorService(service) {
@Override protected Callable wrapTask(Callable callable) {
return Callables.threadRenaming(callable, nameSupplier);
}
@Override protected Runnable wrapTask(Runnable command) {
return Callables.threadRenaming(command, nameSupplier);
}
};
}
/**
* Creates a {@link ScheduledExecutorService} that renames the {@link Thread threads} that its
* tasks run in.
*
* The names are retrieved from the {@code nameSupplier} on the thread that is being renamed
* right before each task is run. The renaming is best effort, if a {@link SecurityManager}
* prevents the renaming then it will be skipped but the tasks will still execute.
*
*
* @param service The executor to decorate
* @param nameSupplier The source of names for each task
*/
static ScheduledExecutorService renamingDecorator(final ScheduledExecutorService service,
final Supplier nameSupplier) {
checkNotNull(service);
checkNotNull(nameSupplier);
if (isAppEngine()) {
// AppEngine doesn't support thread renaming, so don't even try.
return service;
}
return new WrappingScheduledExecutorService(service) {
@Override protected Callable wrapTask(Callable callable) {
return Callables.threadRenaming(callable, nameSupplier);
}
@Override protected Runnable wrapTask(Runnable command) {
return Callables.threadRenaming(command, nameSupplier);
}
};
}
/**
* Shuts down the given executor gradually, first disabling new submissions and later cancelling
* existing tasks.
*
* The method takes the following steps:
*
* - calls {@link ExecutorService#shutdown()}, disabling acceptance of new submitted tasks.
*
- waits for half of the specified timeout.
*
- if the timeout expires, it calls {@link ExecutorService#shutdownNow()}, cancelling
* pending tasks and interrupting running tasks.
*
- waits for the other half of the specified timeout.
*
*
* If, at any step of the process, the given executor is terminated or the calling thread is
* interrupted, the method calls {@link ExecutorService#shutdownNow()}, cancelling
* pending tasks and interrupting running tasks.
*
* @param service the {@code ExecutorService} to shut down
* @param timeout the maximum time to wait for the {@code ExecutorService} to terminate
* @param unit the time unit of the timeout argument
* @return {@code true} if the pool was terminated successfully, {@code false} if the
* {@code ExecutorService} could not terminate or the thread running this method
* is interrupted while waiting for the {@code ExecutorService} to terminate
* @since 17.0
*/
@Beta
public static boolean shutdownAndAwaitTermination(
ExecutorService service, long timeout, TimeUnit unit) {
checkNotNull(unit);
// Disable new tasks from being submitted
service.shutdown();
try {
long halfTimeoutNanos = TimeUnit.NANOSECONDS.convert(timeout, unit) / 2;
// Wait for half the duration of the timeout for existing tasks to terminate
if (!service.awaitTermination(halfTimeoutNanos, TimeUnit.NANOSECONDS)) {
// Cancel currently executing tasks
service.shutdownNow();
// Wait the other half of the timeout for tasks to respond to being cancelled
service.awaitTermination(halfTimeoutNanos, TimeUnit.NANOSECONDS);
}
} catch (InterruptedException ie) {
// Preserve interrupt status
Thread.currentThread().interrupt();
// (Re-)Cancel if current thread also interrupted
service.shutdownNow();
}
return service.isTerminated();
}
}