Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2012 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
/*
Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
3. The names of the authors may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,
INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This program is based on zlib-1.1.3, so all credit should go authors
* Jean-loup Gailly([email protected]) and Mark Adler([email protected])
* and contributors of zlib.
*/
package org.jboss.netty.util.internal.jzlib;
final class InfBlocks {
// And'ing with mask[n] masks the lower n bits
private static final int[] inflate_mask = { 0x00000000, 0x00000001,
0x00000003, 0x00000007, 0x0000000f, 0x0000001f, 0x0000003f,
0x0000007f, 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff };
// Table for deflate from PKZIP's appnote.txt.
private static final int[] border = { // Order of the bit length code lengths
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
private static final int TYPE = 0; // get type bits (3, including end bit)
private static final int LENS = 1; // get lengths for stored
private static final int STORED = 2; // processing stored block
private static final int TABLE = 3; // get table lengths
private static final int BTREE = 4; // get bit lengths tree for a dynamic block
private static final int DTREE = 5; // get length, distance trees for a dynamic block
private static final int CODES = 6; // processing fixed or dynamic block
private static final int DRY = 7; // output remaining window bytes
private static final int DONE = 8; // finished last block, done
private static final int BAD = 9; // ot a data error--stuck here
private int mode; // current inflate_block mode
private int left; // if STORED, bytes left to copy
private int table; // table lengths (14 bits)
private int index; // index into blens (or border)
private int[] blens; // bit lengths of codes
private final int[] bb = new int[1]; // bit length tree depth
private final int[] tb = new int[1]; // bit length decoding tree
private final InfCodes codes = new InfCodes(); // if CODES, current state
private int last; // true if this block is the last block
// mode independent information
int bitk; // bits in bit buffer
int bitb; // bit buffer
private int[] hufts; // single malloc for tree space
byte[] window; // sliding window
final int end; // one byte after sliding window
int read; // window read pointer
int write; // window write pointer
private final Object checkfn; // check function
private long check; // check on output
private final InfTree inftree = new InfTree();
InfBlocks(ZStream z, Object checkfn, int w) {
hufts = new int[JZlib.MANY * 3];
window = new byte[w];
end = w;
this.checkfn = checkfn;
mode = TYPE;
reset(z, null);
}
void reset(ZStream z, long[] c) {
if (c != null) {
c[0] = check;
}
mode = TYPE;
bitk = 0;
bitb = 0;
read = write = 0;
if (checkfn != null) {
z.adler = check = Adler32.adler32(0L, null, 0, 0);
}
}
int proc(ZStream z, int r) {
int t; // temporary storage
int b; // bit buffer
int k; // bits in bit buffer
int p; // input data pointer
int n; // bytes available there
int q; // output window write pointer
int m; // bytes to end of window or read pointer
// copy input/output information to locals (UPDATE macro restores)
{
p = z.next_in_index;
n = z.avail_in;
b = bitb;
k = bitk;
}
{
q = write;
m = q < read? read - q - 1 : end - q;
}
// process input based on current state
while (true) {
switch (mode) {
case TYPE:
while (k < 3) {
if (n != 0) {
r = JZlib.Z_OK;
} else {
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
n --;
b |= (z.next_in[p ++] & 0xff) << k;
k += 8;
}
t = b & 7;
last = t & 1;
switch (t >>> 1) {
case 0: // stored
{
b >>>= 3;
k -= 3;
}
t = k & 7; // go to byte boundary
{
b >>>= t;
k -= t;
}
mode = LENS; // get length of stored block
break;
case 1: // fixed
{
int[] bl = new int[1];
int[] bd = new int[1];
int[][] tl = new int[1][];
int[][] td = new int[1][];
InfTree.inflate_trees_fixed(bl, bd, tl, td);
codes.init(bl[0], bd[0], tl[0], 0, td[0], 0);
}
{
b >>>= 3;
k -= 3;
}
mode = CODES;
break;
case 2: // dynamic
{
b >>>= 3;
k -= 3;
}
mode = TABLE;
break;
case 3: // illegal
{
b >>>= 3;
k -= 3;
}
mode = BAD;
z.msg = "invalid block type";
r = JZlib.Z_DATA_ERROR;
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
break;
case LENS:
while (k < 32) {
if (n != 0) {
r = JZlib.Z_OK;
} else {
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
n --;
b |= (z.next_in[p ++] & 0xff) << k;
k += 8;
}
if ((~b >>> 16 & 0xffff) != (b & 0xffff)) {
mode = BAD;
z.msg = "invalid stored block lengths";
r = JZlib.Z_DATA_ERROR;
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
left = b & 0xffff;
b = k = 0; // dump bits
mode = left != 0? STORED : last != 0? DRY : TYPE;
break;
case STORED:
if (n == 0) {
bitb = b;
bitk = k;
z.avail_in = 0;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
if (m == 0) {
if (q == end && read != 0) {
q = 0;
m = q < read? read - q - 1 : end - q;
}
if (m == 0) {
write = q;
r = inflate_flush(z, r);
q = write;
m = q < read? read - q - 1 : end - q;
if (q == end && read != 0) {
q = 0;
m = q < read? read - q - 1 : end - q;
}
if (m == 0) {
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
}
}
r = JZlib.Z_OK;
t = left;
if (t > n) {
t = n;
}
if (t > m) {
t = m;
}
System.arraycopy(z.next_in, p, window, q, t);
p += t;
n -= t;
q += t;
m -= t;
if ((left -= t) != 0) {
break;
}
mode = last != 0? DRY : TYPE;
break;
case TABLE:
while (k < 14) {
if (n != 0) {
r = JZlib.Z_OK;
} else {
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
n --;
b |= (z.next_in[p ++] & 0xff) << k;
k += 8;
}
table = t = b & 0x3fff;
if ((t & 0x1f) > 29 || (t >> 5 & 0x1f) > 29) {
mode = BAD;
z.msg = "too many length or distance symbols";
r = JZlib.Z_DATA_ERROR;
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
t = 258 + (t & 0x1f) + (t >> 5 & 0x1f);
if (blens == null || blens.length < t) {
blens = new int[t];
} else {
for (int i = 0; i < t; i ++) {
blens[i] = 0;
}
}
{
b >>>= 14;
k -= 14;
}
index = 0;
mode = BTREE;
case BTREE:
while (index < 4 + (table >>> 10)) {
while (k < 3) {
if (n != 0) {
r = JZlib.Z_OK;
} else {
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
n --;
b |= (z.next_in[p ++] & 0xff) << k;
k += 8;
}
blens[border[index ++]] = b & 7;
{
b >>>= 3;
k -= 3;
}
}
while (index < 19) {
blens[border[index ++]] = 0;
}
bb[0] = 7;
t = inftree.inflate_trees_bits(blens, bb, tb, hufts, z);
if (t != JZlib.Z_OK) {
r = t;
if (r == JZlib.Z_DATA_ERROR) {
blens = null;
mode = BAD;
}
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
index = 0;
mode = DTREE;
case DTREE:
while (true) {
t = table;
if (!(index < 258 + (t & 0x1f) + (t >> 5 & 0x1f))) {
break;
}
int i, j, c;
t = bb[0];
while (k < t) {
if (n != 0) {
r = JZlib.Z_OK;
} else {
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
n --;
b |= (z.next_in[p ++] & 0xff) << k;
k += 8;
}
if (tb[0] == -1) {
//System.err.println("null...");
}
t = hufts[(tb[0] + (b & inflate_mask[t])) * 3 + 1];
c = hufts[(tb[0] + (b & inflate_mask[t])) * 3 + 2];
if (c < 16) {
b >>>= t;
k -= t;
blens[index ++] = c;
} else { // c == 16..18
i = c == 18? 7 : c - 14;
j = c == 18? 11 : 3;
while (k < t + i) {
if (n != 0) {
r = JZlib.Z_OK;
} else {
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
n --;
b |= (z.next_in[p ++] & 0xff) << k;
k += 8;
}
b >>>= t;
k -= t;
j += b & inflate_mask[i];
b >>>= i;
k -= i;
i = index;
t = table;
if (i + j > 258 + (t & 0x1f) + (t >> 5 & 0x1f) ||
c == 16 && i < 1) {
blens = null;
mode = BAD;
z.msg = "invalid bit length repeat";
r = JZlib.Z_DATA_ERROR;
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
c = c == 16? blens[i - 1] : 0;
do {
blens[i ++] = c;
} while (-- j != 0);
index = i;
}
}
tb[0] = -1;
{
int[] bl = new int[1];
int[] bd = new int[1];
int[] tl = new int[1];
int[] td = new int[1];
bl[0] = 9; // must be <= 9 for lookahead assumptions
bd[0] = 6; // must be <= 9 for lookahead assumptions
t = table;
t = inftree.inflate_trees_dynamic(257 + (t & 0x1f),
1 + (t >> 5 & 0x1f), blens, bl, bd, tl, td, hufts,
z);
if (t != JZlib.Z_OK) {
if (t == JZlib.Z_DATA_ERROR) {
blens = null;
mode = BAD;
}
r = t;
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
codes.init(bl[0], bd[0], hufts, tl[0], hufts, td[0]);
}
mode = CODES;
case CODES:
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
if ((r = codes.proc(this, z, r)) != JZlib.Z_STREAM_END) {
return inflate_flush(z, r);
}
r = JZlib.Z_OK;
p = z.next_in_index;
n = z.avail_in;
b = bitb;
k = bitk;
q = write;
m = q < read? read - q - 1 : end - q;
if (last == 0) {
mode = TYPE;
break;
}
mode = DRY;
case DRY:
write = q;
r = inflate_flush(z, r);
q = write;
if (read != write) {
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
mode = DONE;
case DONE:
r = JZlib.Z_STREAM_END;
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
case BAD:
r = JZlib.Z_DATA_ERROR;
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
default:
r = JZlib.Z_STREAM_ERROR;
bitb = b;
bitk = k;
z.avail_in = n;
z.total_in += p - z.next_in_index;
z.next_in_index = p;
write = q;
return inflate_flush(z, r);
}
}
}
void free(ZStream z) {
reset(z, null);
window = null;
hufts = null;
//ZFREE(z, s);
}
void set_dictionary(byte[] d, int start, int n) {
System.arraycopy(d, start, window, 0, n);
read = write = n;
}
// Returns true if inflate is currently at the end of a block generated
// by Z_SYNC_FLUSH or Z_FULL_FLUSH.
int sync_point() {
return mode == LENS? 1 : 0;
}
// copy as much as possible from the sliding window to the output area
int inflate_flush(ZStream z, int r) {
int n;
int p;
int q;
// local copies of source and destination pointers
p = z.next_out_index;
q = read;
// compute number of bytes to copy as far as end of window
n = (q <= write? write : end) - q;
if (n > z.avail_out) {
n = z.avail_out;
}
if (n != 0 && r == JZlib.Z_BUF_ERROR) {
r = JZlib.Z_OK;
}
// update counters
z.avail_out -= n;
z.total_out += n;
// update check information
if (checkfn != null) {
z.adler = check = Adler32.adler32(check, window, q, n);
}
// copy as far as end of window
System.arraycopy(window, q, z.next_out, p, n);
p += n;
q += n;
// see if more to copy at beginning of window
if (q == end) {
// wrap pointers
q = 0;
if (write == end) {
write = 0;
}
// compute bytes to copy
n = write - q;
if (n > z.avail_out) {
n = z.avail_out;
}
if (n != 0 && r == JZlib.Z_BUF_ERROR) {
r = JZlib.Z_OK;
}
// update counters
z.avail_out -= n;
z.total_out += n;
// update check information
if (checkfn != null) {
z.adler = check = Adler32.adler32(check, window, q, n);
}
// copy
System.arraycopy(window, q, z.next_out, p, n);
p += n;
q += n;
}
// update pointers
z.next_out_index = p;
read = q;
// done
return r;
}
}