All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jooq.SelectSeekStep4 Maven / Gradle / Ivy

There is a newer version: 0.2.5
Show newest version
/*
 * Copyright (c) 2009-2016, Data Geekery GmbH (http://www.datageekery.com)
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Other licenses:
 * -----------------------------------------------------------------------------
 * Commercial licenses for this work are available. These replace the above
 * ASL 2.0 and offer limited warranties, support, maintenance, and commercial
 * database integrations.
 *
 * For more information, please visit: http://www.jooq.org/licenses
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */
package org.jooq;

import javax.annotation.Generated;

import org.jooq.Record;

/**
 * This type is used for the {@link Select}'s DSL API when selecting generic
 * {@link Record} types.
 * 

* Example:

 * -- get all authors' first and last names, and the number
 * -- of books they've written in German, if they have written
 * -- more than five books in German in the last three years
 * -- (from 2011), and sort those authors by last names
 * -- limiting results to the second and third row
 *
 *   SELECT T_AUTHOR.FIRST_NAME, T_AUTHOR.LAST_NAME, COUNT(*)
 *     FROM T_AUTHOR
 *     JOIN T_BOOK ON T_AUTHOR.ID = T_BOOK.AUTHOR_ID
 *    WHERE T_BOOK.LANGUAGE = 'DE'
 *      AND T_BOOK.PUBLISHED > '2008-01-01'
 * GROUP BY T_AUTHOR.FIRST_NAME, T_AUTHOR.LAST_NAME
 *   HAVING COUNT(*) > 5
 * ORDER BY T_AUTHOR.LAST_NAME ASC NULLS FIRST
 *    LIMIT 2
 *   OFFSET 1
 *      FOR UPDATE
 *       OF FIRST_NAME, LAST_NAME
 *       NO WAIT
 * 
Its equivalent in jOOQ
 * create.select(TAuthor.FIRST_NAME, TAuthor.LAST_NAME, create.count())
 *       .from(T_AUTHOR)
 *       .join(T_BOOK).on(TBook.AUTHOR_ID.equal(TAuthor.ID))
 *       .where(TBook.LANGUAGE.equal("DE"))
 *       .and(TBook.PUBLISHED.greaterThan(parseDate('2008-01-01')))
 *       .groupBy(TAuthor.FIRST_NAME, TAuthor.LAST_NAME)
 *       .having(create.count().greaterThan(5))
 *       .orderBy(TAuthor.LAST_NAME.asc().nullsFirst())
 *       .limit(2)
 *       .offset(1)
 *       .forUpdate()
 *       .of(TAuthor.FIRST_NAME, TAuthor.LAST_NAME)
 *       .noWait();
 * 
Refer to the manual for more details * * @author Lukas Eder */ @Generated("This class was generated using jOOQ-tools") public interface SelectSeekStep4 extends SelectLimitStep { /** * Add a synthetic SEEK AFTER clause to the query. *

* The synthetic SEEK AFTER clause is an alternative way to specify * an OFFSET, and thus to perform paging in a SQL query. This * can be advantageous for two reasons: *

*

    *
  1. The SQL generated from the SEEK AFTER clause is a regular * predicate, which can be used by query plan optimisers to choose an * appropriate index. The SQL standard OFFSET clause will need * to skip N rows in memory.
  2. *
  3. The SEEK AFTER clause is stable with respect to new data being * inserted or data being deleted while paging through pages.
  4. *
*

* Example:

     * DSL.using(configuration)
     *    .selectFrom(TABLE)
     *    .orderBy(ID, CODE)
     *    .seek(3, "abc")
     *    .fetch();
     * 
*

* The above query will render the following SQL statement: *

*

     * SELECT * FROM table
     * WHERE (id, code) > (3, 'abc')
     * ORDER BY id ASC, code ASC
     * 
*

* The actual row value expression predicate may be expanded into this * equivalent predicate: *

*

     * WHERE (id > 3) OR (id = 3 AND code > 'abc')
     * 
*

* The SEEK AFTER method currently does not support seeking * NULL values, or operating with NULLS FIRST, * NULLS LAST clauses in the ORDER BY clause. * * @see http://use-the-index-luke.com/sql/partial-results/fetch-next-page * @see http://blog.jooq.org/2013/10/26/faster-sql-paging-with-jooq-using-the-seek-method * @see #seekAfter(Object, Object, Object, Object) */ SelectSeekLimitStep seek(T1 t1, T2 t2, T3 t3, T4 t4); /** * Add a synthetic SEEK AFTER clause to the query. *

* The synthetic SEEK AFTER clause is an alternative way to specify * an OFFSET, and thus to perform paging in a SQL query. This * can be advantageous for two reasons: *

*

    *
  1. The SQL generated from the SEEK AFTER clause is a regular * predicate, which can be used by query plan optimisers to choose an * appropriate index. The SQL standard OFFSET clause will need * to skip N rows in memory.
  2. *
  3. The SEEK AFTER clause is stable with respect to new data being * inserted or data being deleted while paging through pages.
  4. *
*

* Example:

     * DSL.using(configuration)
     *    .selectFrom(TABLE)
     *    .orderBy(ID, CODE)
     *    .seek(3, "abc")
     *    .fetch();
     * 
*

* The above query will render the following SQL statement: *

*

     * SELECT * FROM table
     * WHERE (id, code) > (3, 'abc')
     * ORDER BY id ASC, code ASC
     * 
*

* The actual row value expression predicate may be expanded into this * equivalent predicate: *

*

     * WHERE (id > 3) OR (id = 3 AND code > 'abc')
     * 
*

* The SEEK AFTER method currently does not support seeking * NULL values, or operating with NULLS FIRST, * NULLS LAST clauses in the ORDER BY clause. * * @see http://use-the-index-luke.com/sql/partial-results/fetch-next-page * @see http://blog.jooq.org/2013/10/26/faster-sql-paging-with-jooq-using-the-seek-method * @see #seekAfter(Field, Field, Field, Field) */ SelectSeekLimitStep seek(Field field1, Field field2, Field field3, Field field4); /** * Add a synthetic SEEK AFTER clause to the query. *

* The synthetic SEEK AFTER clause is an alternative way to specify * an OFFSET, and thus to perform paging in a SQL query. This * can be advantageous for two reasons: *

*

    *
  1. The SQL generated from the SEEK AFTER clause is a regular * predicate, which can be used by query plan optimisers to choose an * appropriate index. The SQL standard OFFSET clause will need * to skip N rows in memory.
  2. *
  3. The SEEK AFTER clause is stable with respect to new data being * inserted or data being deleted while paging through pages.
  4. *
*

* Example:

     * DSL.using(configuration)
     *    .selectFrom(TABLE)
     *    .orderBy(ID, CODE)
     *    .seekAfter(3, "abc")
     *    .fetch();
     * 
*

* The above query will render the following SQL statement: *

*

     * SELECT * FROM table
     * WHERE (id, code) > (3, 'abc')
     * ORDER BY id ASC, code ASC
     * 
*

* The actual row value expression predicate may be expanded into this * equivalent predicate: *

*

     * WHERE (id > 3) OR (id = 3 AND code > 'abc')
     * 
*

* The SEEK AFTER method currently does not support seeking * NULL values, or operating with NULLS FIRST, * NULLS LAST clauses in the ORDER BY clause. * * @see http://use-the-index-luke.com/sql/partial-results/fetch-next-page * @see http://blog.jooq.org/2013/10/26/faster-sql-paging-with-jooq-using-the-seek-method */ SelectSeekLimitStep seekAfter(T1 t1, T2 t2, T3 t3, T4 t4); /** * Add a synthetic SEEK AFTER clause to the query. *

* The synthetic SEEK AFTER clause is an alternative way to specify * an OFFSET, and thus to perform paging in a SQL query. This * can be advantageous for two reasons: *

*

    *
  1. The SQL generated from the SEEK AFTER clause is a regular * predicate, which can be used by query plan optimisers to choose an * appropriate index. The SQL standard OFFSET clause will need * to skip N rows in memory.
  2. *
  3. The SEEK AFTER clause is stable with respect to new data being * inserted or data being deleted while paging through pages.
  4. *
*

* Example:

     * DSL.using(configuration)
     *    .selectFrom(TABLE)
     *    .orderBy(ID, CODE)
     *    .seekAfter(3, "abc")
     *    .fetch();
     * 
*

* The above query will render the following SQL statement: *

*

     * SELECT * FROM table
     * WHERE (id, code) > (3, 'abc')
     * ORDER BY id ASC, code ASC
     * 
*

* The actual row value expression predicate may be expanded into this * equivalent predicate: *

*

     * WHERE (id > 3) OR (id = 3 AND code > 'abc')
     * 
*

* The SEEK AFTER method currently does not support seeking * NULL values, or operating with NULLS FIRST, * NULLS LAST clauses in the ORDER BY clause. * * @see http://use-the-index-luke.com/sql/partial-results/fetch-next-page * @see http://blog.jooq.org/2013/10/26/faster-sql-paging-with-jooq-using-the-seek-method */ SelectSeekLimitStep seekAfter(Field field1, Field field2, Field field3, Field field4); /** * Add a synthetic SEEK BEFORE clause to the query. *

* The synthetic SEEK BEFORE clause is an alternative way to specify * an OFFSET, and thus to perform paging in a SQL query. This * can be advantageous for two reasons: *

*

    *
  1. The SQL generated from the SEEK BEFORE clause is a regular * predicate, which can be used by query plan optimisers to choose an * appropriate index. The SQL standard OFFSET clause will need * to skip N rows in memory.
  2. *
  3. The SEEK BEFORE clause is stable with respect to new data being * inserted or data being deleted while paging through pages.
  4. *
*

* Example:

     * DSL.using(configuration)
     *    .selectFrom(TABLE)
     *    .orderBy(ID, CODE)
     *    .seekBefore(3, "abc")
     *    .fetch();
     * 
*

* The above query will render the following SQL statement: *

*

     * SELECT * FROM table
     * WHERE (id, code) < (3, 'abc')
     * ORDER BY id ASC, code ASC
     * 
*

* The actual row value expression predicate may be expanded into this * equivalent predicate: *

*

     * WHERE (id < 3) OR (id = 3 AND code < 'abc')
     * 
*

* The SEEK BEFORE method currently does not support seeking * NULL values, or operating with NULLS FIRST, * NULLS LAST clauses in the ORDER BY clause. * * @see http://use-the-index-luke.com/sql/partial-results/fetch-next-page * @see http://blog.jooq.org/2013/10/26/faster-sql-paging-with-jooq-using-the-seek-method */ SelectSeekLimitStep seekBefore(T1 t1, T2 t2, T3 t3, T4 t4); /** * Add a synthetic SEEK BEFORE clause to the query. *

* The synthetic SEEK BEFORE clause is an alternative way to specify * an OFFSET, and thus to perform paging in a SQL query. This * can be advantageous for two reasons: *

*

    *
  1. The SQL generated from the SEEK BEFORE clause is a regular * predicate, which can be used by query plan optimisers to choose an * appropriate index. The SQL standard OFFSET clause will need * to skip N rows in memory.
  2. *
  3. The SEEK BEFORE clause is stable with respect to new data being * inserted or data being deleted while paging through pages.
  4. *
*

* Example:

     * DSL.using(configuration)
     *    .selectFrom(TABLE)
     *    .orderBy(ID, CODE)
     *    .seekBefore(3, "abc")
     *    .fetch();
     * 
*

* The above query will render the following SQL statement: *

*

     * SELECT * FROM table
     * WHERE (id, code) < (3, 'abc')
     * ORDER BY id ASC, code ASC
     * 
*

* The actual row value expression predicate may be expanded into this * equivalent predicate: *

*

     * WHERE (id < 3) OR (id = 3 AND code < 'abc')
     * 
*

* The SEEK BEFORE method currently does not support seeking * NULL values, or operating with NULLS FIRST, * NULLS LAST clauses in the ORDER BY clause. * * @see http://use-the-index-luke.com/sql/partial-results/fetch-next-page * @see http://blog.jooq.org/2013/10/26/faster-sql-paging-with-jooq-using-the-seek-method */ SelectSeekLimitStep seekBefore(Field field1, Field field2, Field field3, Field field4); }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy