Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright (C) 2007 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Predicate;
import com.google.common.base.Predicates;
import com.google.common.collect.Collections2.FilteredCollection;
import com.google.common.math.IntMath;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import java.io.Serializable;
import java.util.AbstractSet;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.EnumSet;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.NavigableSet;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.CopyOnWriteArraySet;
import javax.annotation.Nullable;
/**
* Static utility methods pertaining to {@link Set} instances. Also see this
* class's counterparts {@link Lists}, {@link Maps} and {@link Queues}.
*
*
See the Guava User Guide article on
* {@code Sets}.
*
* @author Kevin Bourrillion
* @author Jared Levy
* @author Chris Povirk
* @since 2.0
*/
@GwtCompatible(emulated = true)
public final class Sets {
private Sets() {}
/**
* {@link AbstractSet} substitute without the potentially-quadratic
* {@code removeAll} implementation.
*/
abstract static class ImprovedAbstractSet extends AbstractSet {
@Override
public boolean removeAll(Collection> c) {
return removeAllImpl(this, c);
}
@Override
public boolean retainAll(Collection> c) {
return super.retainAll(checkNotNull(c)); // GWT compatibility
}
}
/**
* Returns an immutable set instance containing the given enum elements.
* Internally, the returned set will be backed by an {@link EnumSet}.
*
*
The iteration order of the returned set follows the enum's iteration
* order, not the order in which the elements are provided to the method.
*
* @param anElement one of the elements the set should contain
* @param otherElements the rest of the elements the set should contain
* @return an immutable set containing those elements, minus duplicates
*/
// http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
@GwtCompatible(serializable = true)
public static > ImmutableSet immutableEnumSet(
E anElement, E... otherElements) {
return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
}
/**
* Returns an immutable set instance containing the given enum elements.
* Internally, the returned set will be backed by an {@link EnumSet}.
*
*
The iteration order of the returned set follows the enum's iteration
* order, not the order in which the elements appear in the given collection.
*
* @param elements the elements, all of the same {@code enum} type, that the
* set should contain
* @return an immutable set containing those elements, minus duplicates
*/
// http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
@GwtCompatible(serializable = true)
public static > ImmutableSet immutableEnumSet(Iterable elements) {
if (elements instanceof ImmutableEnumSet) {
return (ImmutableEnumSet) elements;
} else if (elements instanceof Collection) {
Collection collection = (Collection) elements;
if (collection.isEmpty()) {
return ImmutableSet.of();
} else {
return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
}
} else {
Iterator itr = elements.iterator();
if (itr.hasNext()) {
EnumSet enumSet = EnumSet.of(itr.next());
Iterators.addAll(enumSet, itr);
return ImmutableEnumSet.asImmutable(enumSet);
} else {
return ImmutableSet.of();
}
}
}
/**
* Returns a new, mutable {@code EnumSet} instance containing the given elements in their
* natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also
* accepts non-{@code Collection} iterables and empty iterables.
*/
public static > EnumSet newEnumSet(
Iterable iterable, Class elementType) {
EnumSet set = EnumSet.noneOf(elementType);
Iterables.addAll(set, iterable);
return set;
}
// HashSet
/**
* Creates a mutable, initially empty {@code HashSet} instance.
*
*
Note: if mutability is not required, use {@link ImmutableSet#of()} instead. If
* {@code E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly
* consider using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to
* get deterministic iteration behavior.
*
*
Note for Java 7 and later: this method is now unnecessary and should be treated as
* deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new
* "diamond" syntax.
*/
public static HashSet newHashSet() {
return new HashSet();
}
/**
* Creates a mutable {@code HashSet} instance initially containing the given elements.
*
*
Note: if elements are non-null and won't be added or removed after this point, use
* {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an
* {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider
* using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
* deterministic iteration behavior.
*
*
This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList
* asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}.
* This method is not actually very useful and will likely be deprecated in the future.
*/
public static HashSet newHashSet(E... elements) {
HashSet set = newHashSetWithExpectedSize(elements.length);
Collections.addAll(set, elements);
return set;
}
/**
* Returns a new hash set using the smallest initial table size that can hold {@code expectedSize}
* elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it
* is what most users want and expect it to do.
*
*
This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8.
*
* @param expectedSize the number of elements you expect to add to the returned set
* @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements
* without resizing
* @throws IllegalArgumentException if {@code expectedSize} is negative
*/
public static HashSet newHashSetWithExpectedSize(int expectedSize) {
return new HashSet(Maps.capacity(expectedSize));
}
/**
* Creates a mutable {@code HashSet} instance containing the given elements. A very thin
* convenience for creating an empty set then calling {@link Collection#addAll} or {@link
* Iterables#addAll}.
*
*
Note: if mutability is not required and the elements are non-null, use {@link
* ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
* FluentIterable} and call {@code elements.toSet()}.)
*
*
Note: if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)}
* instead.
*
*
Note for Java 7 and later: if {@code elements} is a {@link Collection}, you don't
* need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of
* the new "diamond" syntax.
*
*
Overall, this method is not very useful and will likely be deprecated in the future.
*/
public static HashSet newHashSet(Iterable extends E> elements) {
return (elements instanceof Collection)
? new HashSet(Collections2.cast(elements))
: newHashSet(elements.iterator());
}
/**
* Creates a mutable {@code HashSet} instance containing the given elements. A very thin
* convenience for creating an empty set and then calling {@link Iterators#addAll}.
*
*
Note: if mutability is not required and the elements are non-null, use {@link
* ImmutableSet#copyOf(Iterator)} instead.
*
*
Note: if {@code E} is an {@link Enum} type, you should create an {@link EnumSet}
* instead.
*
*
Overall, this method is not very useful and will likely be deprecated in the future.
*/
public static HashSet newHashSet(Iterator extends E> elements) {
HashSet set = newHashSet();
Iterators.addAll(set, elements);
return set;
}
/**
* Creates a thread-safe set backed by a hash map. The set is backed by a
* {@link ConcurrentHashMap} instance, and thus carries the same concurrency
* guarantees.
*
*
Unlike {@code HashSet}, this class does NOT allow {@code null} to be
* used as an element. The set is serializable.
*
* @return a new, empty thread-safe {@code Set}
* @since 15.0
*/
public static Set newConcurrentHashSet() {
return Collections.newSetFromMap(new ConcurrentHashMap());
}
/**
* Creates a thread-safe set backed by a hash map and containing the given
* elements. The set is backed by a {@link ConcurrentHashMap} instance, and
* thus carries the same concurrency guarantees.
*
*
Unlike {@code HashSet}, this class does NOT allow {@code null} to be
* used as an element. The set is serializable.
*
* @param elements the elements that the set should contain
* @return a new thread-safe set containing those elements (minus duplicates)
* @throws NullPointerException if {@code elements} or any of its contents is
* null
* @since 15.0
*/
public static Set newConcurrentHashSet(Iterable extends E> elements) {
Set set = newConcurrentHashSet();
Iterables.addAll(set, elements);
return set;
}
// LinkedHashSet
/**
* Creates a mutable, empty {@code LinkedHashSet} instance.
*
*
Note: if mutability is not required, use {@link ImmutableSet#of()} instead.
*
*
Note for Java 7 and later: this method is now unnecessary and should be treated as
* deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of
* the new "diamond" syntax.
*
* @return a new, empty {@code LinkedHashSet}
*/
public static LinkedHashSet newLinkedHashSet() {
return new LinkedHashSet();
}
/**
* Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it
* should hold {@code expectedSize} elements without growth. This behavior cannot be
* broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed
* that the method isn't inadvertently oversizing the returned set.
*
* @param expectedSize the number of elements you expect to add to the returned set
* @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize}
* elements without resizing
* @throws IllegalArgumentException if {@code expectedSize} is negative
* @since 11.0
*/
public static LinkedHashSet newLinkedHashSetWithExpectedSize(int expectedSize) {
return new LinkedHashSet(Maps.capacity(expectedSize));
}
/**
* Creates a mutable {@code LinkedHashSet} instance containing the given elements in order.
*
*
Note: if mutability is not required and the elements are non-null, use {@link
* ImmutableSet#copyOf(Iterable)} instead.
*
*
Note for Java 7 and later: if {@code elements} is a {@link Collection}, you don't
* need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage
* of the new "diamond" syntax.
*
*
Overall, this method is not very useful and will likely be deprecated in the future.
*
* @param elements the elements that the set should contain, in order
* @return a new {@code LinkedHashSet} containing those elements (minus duplicates)
*/
public static LinkedHashSet newLinkedHashSet(Iterable extends E> elements) {
if (elements instanceof Collection) {
return new LinkedHashSet(Collections2.cast(elements));
}
LinkedHashSet set = newLinkedHashSet();
Iterables.addAll(set, elements);
return set;
}
// TreeSet
/**
* Creates a mutable, empty {@code TreeSet} instance sorted by the natural sort ordering of
* its elements.
*
*
Note: if mutability is not required, use {@link ImmutableSortedSet#of()} instead.
*
*
Note for Java 7 and later: this method is now unnecessary and should be treated as
* deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
* "diamond" syntax.
*
* @return a new, empty {@code TreeSet}
*/
public static TreeSet newTreeSet() {
return new TreeSet();
}
/**
* Creates a mutable {@code TreeSet} instance containing the given elements sorted by their
* natural ordering.
*
*
Note: if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)}
* instead.
*
*
Note: If {@code elements} is a {@code SortedSet} with an explicit comparator, this
* method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code
* TreeSet} with that comparator.
*
*
Note for Java 7 and later: this method is now unnecessary and should be treated as
* deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
* "diamond" syntax.
*
*
This method is just a small convenience for creating an empty set and then calling {@link
* Iterables#addAll}. This method is not very useful and will likely be deprecated in the future.
*
* @param elements the elements that the set should contain
* @return a new {@code TreeSet} containing those elements (minus duplicates)
*/
public static TreeSet newTreeSet(Iterable extends E> elements) {
TreeSet set = newTreeSet();
Iterables.addAll(set, elements);
return set;
}
/**
* Creates a mutable, empty {@code TreeSet} instance with the given comparator.
*
*
Note: if mutability is not required, use {@code
* ImmutableSortedSet.orderedBy(comparator).build()} instead.
*
*
Note for Java 7 and later: this method is now unnecessary and should be treated as
* deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
* "diamond" syntax. One caveat to this is that the {@code
* TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this
* factory rejects null. Clean your code accordingly.
*
* @param comparator the comparator to use to sort the set
* @return a new, empty {@code TreeSet}
* @throws NullPointerException if {@code comparator} is null
*/
public static TreeSet newTreeSet(Comparator super E> comparator) {
return new TreeSet(checkNotNull(comparator));
}
/**
* Creates an empty {@code Set} that uses identity to determine equality. It
* compares object references, instead of calling {@code equals}, to
* determine whether a provided object matches an element in the set. For
* example, {@code contains} returns {@code false} when passed an object that
* equals a set member, but isn't the same instance. This behavior is similar
* to the way {@code IdentityHashMap} handles key lookups.
*
* @since 8.0
*/
public static Set newIdentityHashSet() {
return Collections.newSetFromMap(Maps.newIdentityHashMap());
}
/**
* Creates an empty {@code CopyOnWriteArraySet} instance.
*
*
Note: if you need an immutable empty {@link Set}, use
* {@link Collections#emptySet} instead.
*
* @return a new, empty {@code CopyOnWriteArraySet}
* @since 12.0
*/
@GwtIncompatible // CopyOnWriteArraySet
public static CopyOnWriteArraySet newCopyOnWriteArraySet() {
return new CopyOnWriteArraySet();
}
/**
* Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
*
* @param elements the elements that the set should contain, in order
* @return a new {@code CopyOnWriteArraySet} containing those elements
* @since 12.0
*/
@GwtIncompatible // CopyOnWriteArraySet
public static CopyOnWriteArraySet newCopyOnWriteArraySet(Iterable extends E> elements) {
// We copy elements to an ArrayList first, rather than incurring the
// quadratic cost of adding them to the COWAS directly.
Collection extends E> elementsCollection =
(elements instanceof Collection)
? Collections2.cast(elements)
: Lists.newArrayList(elements);
return new CopyOnWriteArraySet(elementsCollection);
}
/**
* Creates an {@code EnumSet} consisting of all enum values that are not in
* the specified collection. If the collection is an {@link EnumSet}, this
* method has the same behavior as {@link EnumSet#complementOf}. Otherwise,
* the specified collection must contain at least one element, in order to
* determine the element type. If the collection could be empty, use
* {@link #complementOf(Collection, Class)} instead of this method.
*
* @param collection the collection whose complement should be stored in the
* enum set
* @return a new, modifiable {@code EnumSet} containing all values of the enum
* that aren't present in the given collection
* @throws IllegalArgumentException if {@code collection} is not an
* {@code EnumSet} instance and contains no elements
*/
public static > EnumSet complementOf(Collection collection) {
if (collection instanceof EnumSet) {
return EnumSet.complementOf((EnumSet) collection);
}
checkArgument(
!collection.isEmpty(), "collection is empty; use the other version of this method");
Class type = collection.iterator().next().getDeclaringClass();
return makeComplementByHand(collection, type);
}
/**
* Creates an {@code EnumSet} consisting of all enum values that are not in
* the specified collection. This is equivalent to
* {@link EnumSet#complementOf}, but can act on any input collection, as long
* as the elements are of enum type.
*
* @param collection the collection whose complement should be stored in the
* {@code EnumSet}
* @param type the type of the elements in the set
* @return a new, modifiable {@code EnumSet} initially containing all the
* values of the enum not present in the given collection
*/
public static > EnumSet complementOf(
Collection collection, Class type) {
checkNotNull(collection);
return (collection instanceof EnumSet)
? EnumSet.complementOf((EnumSet) collection)
: makeComplementByHand(collection, type);
}
private static > EnumSet makeComplementByHand(
Collection collection, Class type) {
EnumSet result = EnumSet.allOf(type);
result.removeAll(collection);
return result;
}
/**
* Returns a set backed by the specified map. The resulting set displays
* the same ordering, concurrency, and performance characteristics as the
* backing map. In essence, this factory method provides a {@link Set}
* implementation corresponding to any {@link Map} implementation. There is no
* need to use this method on a {@link Map} implementation that already has a
* corresponding {@link Set} implementation (such as {@link java.util.HashMap}
* or {@link java.util.TreeMap}).
*
*
Each method invocation on the set returned by this method results in
* exactly one method invocation on the backing map or its {@code keySet}
* view, with one exception. The {@code addAll} method is implemented as a
* sequence of {@code put} invocations on the backing map.
*
*
The specified map must be empty at the time this method is invoked,
* and should not be accessed directly after this method returns. These
* conditions are ensured if the map is created empty, passed directly
* to this method, and no reference to the map is retained, as illustrated
* in the following code fragment:
{@code
*
* Set
*
*
The returned set is serializable if the backing map is.
*
* @param map the backing map
* @return the set backed by the map
* @throws IllegalArgumentException if {@code map} is not empty
* @deprecated Use {@link Collections#newSetFromMap} instead. This method
* will be removed in December 2017.
*/
@Deprecated
public static Set newSetFromMap(Map map) {
return Collections.newSetFromMap(map);
}
/**
* An unmodifiable view of a set which may be backed by other sets; this view
* will change as the backing sets do. Contains methods to copy the data into
* a new set which will then remain stable. There is usually no reason to
* retain a reference of type {@code SetView}; typically, you either use it
* as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or
* {@link #copyInto} and forget the {@code SetView} itself.
*
* @since 2.0
*/
public abstract static class SetView extends AbstractSet {
private SetView() {} // no subclasses but our own
/**
* Returns an immutable copy of the current contents of this set view.
* Does not support null elements.
*
*
Warning: this may have unexpected results if a backing set of
* this view uses a nonstandard notion of equivalence, for example if it is
* a {@link TreeSet} using a comparator that is inconsistent with {@link
* Object#equals(Object)}.
*/
public ImmutableSet immutableCopy() {
return ImmutableSet.copyOf(this);
}
/**
* Copies the current contents of this set view into an existing set. This
* method has equivalent behavior to {@code set.addAll(this)}, assuming that
* all the sets involved are based on the same notion of equivalence.
*
* @return a reference to {@code set}, for convenience
*/
// Note: S should logically extend Set super E> but can't due to either
// some javac bug or some weirdness in the spec, not sure which.
@CanIgnoreReturnValue
public > S copyInto(S set) {
set.addAll(this);
return set;
}
/**
* Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view.
*
* @since 20.0 (present with return type {@link Iterator} since 2.0)
*/
@Override
public abstract UnmodifiableIterator iterator();
}
/**
* Returns an unmodifiable view of the union of two sets. The returned
* set contains all elements that are contained in either backing set.
* Iterating over the returned set iterates first over all the elements of
* {@code set1}, then over each element of {@code set2}, in order, that is not
* contained in {@code set1}.
*
*
Results are undefined if {@code set1} and {@code set2} are sets based on
* different equivalence relations (as {@link HashSet}, {@link TreeSet}, and
* the {@link Map#keySet} of an {@code IdentityHashMap} all are).
*/
public static SetView union(final Set extends E> set1, final Set extends E> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
final Set extends E> set2minus1 = difference(set2, set1);
return new SetView() {
@Override
public int size() {
return IntMath.saturatedAdd(set1.size(), set2minus1.size());
}
@Override
public boolean isEmpty() {
return set1.isEmpty() && set2.isEmpty();
}
@Override
public UnmodifiableIterator iterator() {
return Iterators.unmodifiableIterator(
Iterators.concat(set1.iterator(), set2minus1.iterator()));
}
@Override
public boolean contains(Object object) {
return set1.contains(object) || set2.contains(object);
}
@Override
public > S copyInto(S set) {
set.addAll(set1);
set.addAll(set2);
return set;
}
@Override
public ImmutableSet immutableCopy() {
return new ImmutableSet.Builder().addAll(set1).addAll(set2).build();
}
};
}
/**
* Returns an unmodifiable view of the intersection of two sets. The
* returned set contains all elements that are contained by both backing sets.
* The iteration order of the returned set matches that of {@code set1}.
*
*
Results are undefined if {@code set1} and {@code set2} are sets based
* on different equivalence relations (as {@code HashSet}, {@code TreeSet},
* and the keySet of an {@code IdentityHashMap} all are).
*
*
Note: The returned view performs slightly better when {@code
* set1} is the smaller of the two sets. If you have reason to believe one of
* your sets will generally be smaller than the other, pass it first.
* Unfortunately, since this method sets the generic type of the returned set
* based on the type of the first set passed, this could in rare cases force
* you to make a cast, for example:
{@code
*
* Set aFewBadObjects = ...
* Set manyBadStrings = ...
*
* // impossible for a non-String to be in the intersection
* SuppressWarnings("unchecked")
* Set badStrings = (Set) Sets.intersection(
* aFewBadObjects, manyBadStrings);}
*
*
This is unfortunate, but should come up only very rarely.
*/
public static SetView intersection(final Set set1, final Set> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
final Predicate inSet2 = Predicates.in(set2);
return new SetView() {
@Override
public UnmodifiableIterator iterator() {
return Iterators.filter(set1.iterator(), inSet2);
}
@Override
public int size() {
return Iterators.size(iterator());
}
@Override
public boolean isEmpty() {
return !iterator().hasNext();
}
@Override
public boolean contains(Object object) {
return set1.contains(object) && set2.contains(object);
}
@Override
public boolean containsAll(Collection> collection) {
return set1.containsAll(collection) && set2.containsAll(collection);
}
};
}
/**
* Returns an unmodifiable view of the difference of two sets. The
* returned set contains all elements that are contained by {@code set1} and
* not contained by {@code set2}. {@code set2} may also contain elements not
* present in {@code set1}; these are simply ignored. The iteration order of
* the returned set matches that of {@code set1}.
*
*
Results are undefined if {@code set1} and {@code set2} are sets based
* on different equivalence relations (as {@code HashSet}, {@code TreeSet},
* and the keySet of an {@code IdentityHashMap} all are).
*/
public static SetView difference(final Set set1, final Set> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
final Predicate notInSet2 = Predicates.not(Predicates.in(set2));
return new SetView() {
@Override
public UnmodifiableIterator iterator() {
return Iterators.filter(set1.iterator(), notInSet2);
}
@Override
public int size() {
return Iterators.size(iterator());
}
@Override
public boolean isEmpty() {
return set2.containsAll(set1);
}
@Override
public boolean contains(Object element) {
return set1.contains(element) && !set2.contains(element);
}
};
}
/**
* Returns an unmodifiable view of the symmetric difference of two
* sets. The returned set contains all elements that are contained in either
* {@code set1} or {@code set2} but not in both. The iteration order of the
* returned set is undefined.
*
*
Results are undefined if {@code set1} and {@code set2} are sets based
* on different equivalence relations (as {@code HashSet}, {@code TreeSet},
* and the keySet of an {@code IdentityHashMap} all are).
*
* @since 3.0
*/
public static SetView symmetricDifference(
final Set extends E> set1, final Set extends E> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
return new SetView() {
@Override
public UnmodifiableIterator iterator() {
final Iterator extends E> itr1 = set1.iterator();
final Iterator extends E> itr2 = set2.iterator();
return new AbstractIterator() {
@Override
public E computeNext() {
while (itr1.hasNext()) {
E elem1 = itr1.next();
if (!set2.contains(elem1)) {
return elem1;
}
}
while (itr2.hasNext()) {
E elem2 = itr2.next();
if (!set1.contains(elem2)) {
return elem2;
}
}
return endOfData();
}
};
}
@Override
public int size() {
return Iterators.size(iterator());
}
@Override
public boolean isEmpty() {
return set1.equals(set2);
}
@Override
public boolean contains(Object element) {
return set1.contains(element) ^ set2.contains(element);
}
};
}
/**
* Returns the elements of {@code unfiltered} that satisfy a predicate. The
* returned set is a live view of {@code unfiltered}; changes to one affect
* the other.
*
*
The resulting set's iterator does not support {@code remove()}, but all
* other set methods are supported. When given an element that doesn't satisfy
* the predicate, the set's {@code add()} and {@code addAll()} methods throw
* an {@link IllegalArgumentException}. When methods such as {@code
* removeAll()} and {@code clear()} are called on the filtered set, only
* elements that satisfy the filter will be removed from the underlying set.
*
*
The returned set isn't threadsafe or serializable, even if
* {@code unfiltered} is.
*
*
Many of the filtered set's methods, such as {@code size()}, iterate
* across every element in the underlying set and determine which elements
* satisfy the filter. When a live view is not needed, it may be faster
* to copy {@code Iterables.filter(unfiltered, predicate)} and use the copy.
*
*
Warning: {@code predicate} must be consistent with equals,
* as documented at {@link Predicate#apply}. Do not provide a predicate such
* as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
* with equals. (See {@link Iterables#filter(Iterable, Class)} for related
* functionality.)
*/
// TODO(kevinb): how to omit that last sentence when building GWT javadoc?
public static Set filter(Set unfiltered, Predicate super E> predicate) {
if (unfiltered instanceof SortedSet) {
return filter((SortedSet) unfiltered, predicate);
}
if (unfiltered instanceof FilteredSet) {
// Support clear(), removeAll(), and retainAll() when filtering a filtered
// collection.
FilteredSet filtered = (FilteredSet) unfiltered;
Predicate combinedPredicate = Predicates.and(filtered.predicate, predicate);
return new FilteredSet((Set) filtered.unfiltered, combinedPredicate);
}
return new FilteredSet(checkNotNull(unfiltered), checkNotNull(predicate));
}
private static class FilteredSet extends FilteredCollection implements Set {
FilteredSet(Set unfiltered, Predicate super E> predicate) {
super(unfiltered, predicate);
}
@Override
public boolean equals(@Nullable Object object) {
return equalsImpl(this, object);
}
@Override
public int hashCode() {
return hashCodeImpl(this);
}
}
/**
* Returns the elements of a {@code SortedSet}, {@code unfiltered}, that
* satisfy a predicate. The returned set is a live view of {@code unfiltered};
* changes to one affect the other.
*
*
The resulting set's iterator does not support {@code remove()}, but all
* other set methods are supported. When given an element that doesn't satisfy
* the predicate, the set's {@code add()} and {@code addAll()} methods throw
* an {@link IllegalArgumentException}. When methods such as
* {@code removeAll()} and {@code clear()} are called on the filtered set,
* only elements that satisfy the filter will be removed from the underlying
* set.
*
*
The returned set isn't threadsafe or serializable, even if
* {@code unfiltered} is.
*
*
Many of the filtered set's methods, such as {@code size()}, iterate across
* every element in the underlying set and determine which elements satisfy
* the filter. When a live view is not needed, it may be faster to copy
* {@code Iterables.filter(unfiltered, predicate)} and use the copy.
*
*
Warning: {@code predicate} must be consistent with equals,
* as documented at {@link Predicate#apply}. Do not provide a predicate such as
* {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with
* equals. (See {@link Iterables#filter(Iterable, Class)} for related
* functionality.)
*
* @since 11.0
*/
public static SortedSet filter(SortedSet unfiltered, Predicate super E> predicate) {
if (unfiltered instanceof FilteredSet) {
// Support clear(), removeAll(), and retainAll() when filtering a filtered
// collection.
FilteredSet filtered = (FilteredSet) unfiltered;
Predicate combinedPredicate = Predicates.and(filtered.predicate, predicate);
return new FilteredSortedSet((SortedSet) filtered.unfiltered, combinedPredicate);
}
return new FilteredSortedSet(checkNotNull(unfiltered), checkNotNull(predicate));
}
private static class FilteredSortedSet extends FilteredSet implements SortedSet {
FilteredSortedSet(SortedSet unfiltered, Predicate super E> predicate) {
super(unfiltered, predicate);
}
@Override
public Comparator super E> comparator() {
return ((SortedSet) unfiltered).comparator();
}
@Override
public SortedSet subSet(E fromElement, E toElement) {
return new FilteredSortedSet(
((SortedSet) unfiltered).subSet(fromElement, toElement), predicate);
}
@Override
public SortedSet headSet(E toElement) {
return new FilteredSortedSet(((SortedSet) unfiltered).headSet(toElement), predicate);
}
@Override
public SortedSet tailSet(E fromElement) {
return new FilteredSortedSet(((SortedSet) unfiltered).tailSet(fromElement), predicate);
}
@Override
public E first() {
return iterator().next();
}
@Override
public E last() {
SortedSet sortedUnfiltered = (SortedSet) unfiltered;
while (true) {
E element = sortedUnfiltered.last();
if (predicate.apply(element)) {
return element;
}
sortedUnfiltered = sortedUnfiltered.headSet(element);
}
}
}
/**
* Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that
* satisfy a predicate. The returned set is a live view of {@code unfiltered};
* changes to one affect the other.
*
*
The resulting set's iterator does not support {@code remove()}, but all
* other set methods are supported. When given an element that doesn't satisfy
* the predicate, the set's {@code add()} and {@code addAll()} methods throw
* an {@link IllegalArgumentException}. When methods such as
* {@code removeAll()} and {@code clear()} are called on the filtered set,
* only elements that satisfy the filter will be removed from the underlying
* set.
*
*
The returned set isn't threadsafe or serializable, even if
* {@code unfiltered} is.
*
*
Many of the filtered set's methods, such as {@code size()}, iterate across
* every element in the underlying set and determine which elements satisfy
* the filter. When a live view is not needed, it may be faster to copy
* {@code Iterables.filter(unfiltered, predicate)} and use the copy.
*
*
Warning: {@code predicate} must be consistent with equals,
* as documented at {@link Predicate#apply}. Do not provide a predicate such as
* {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with
* equals. (See {@link Iterables#filter(Iterable, Class)} for related
* functionality.)
*
* @since 14.0
*/
@GwtIncompatible // NavigableSet
@SuppressWarnings("unchecked")
public static NavigableSet filter(
NavigableSet unfiltered, Predicate super E> predicate) {
if (unfiltered instanceof FilteredSet) {
// Support clear(), removeAll(), and retainAll() when filtering a filtered
// collection.
FilteredSet filtered = (FilteredSet) unfiltered;
Predicate combinedPredicate = Predicates.and(filtered.predicate, predicate);
return new FilteredNavigableSet((NavigableSet) filtered.unfiltered, combinedPredicate);
}
return new FilteredNavigableSet(checkNotNull(unfiltered), checkNotNull(predicate));
}
@GwtIncompatible // NavigableSet
private static class FilteredNavigableSet extends FilteredSortedSet
implements NavigableSet {
FilteredNavigableSet(NavigableSet unfiltered, Predicate super E> predicate) {
super(unfiltered, predicate);
}
NavigableSet unfiltered() {
return (NavigableSet) unfiltered;
}
@Override
@Nullable
public E lower(E e) {
return Iterators.getNext(headSet(e, false).descendingIterator(), null);
}
@Override
@Nullable
public E floor(E e) {
return Iterators.getNext(headSet(e, true).descendingIterator(), null);
}
@Override
public E ceiling(E e) {
return Iterables.getFirst(tailSet(e, true), null);
}
@Override
public E higher(E e) {
return Iterables.getFirst(tailSet(e, false), null);
}
@Override
public E pollFirst() {
return Iterables.removeFirstMatching(unfiltered(), predicate);
}
@Override
public E pollLast() {
return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate);
}
@Override
public NavigableSet descendingSet() {
return Sets.filter(unfiltered().descendingSet(), predicate);
}
@Override
public Iterator descendingIterator() {
return Iterators.filter(unfiltered().descendingIterator(), predicate);
}
@Override
public E last() {
return descendingIterator().next();
}
@Override
public NavigableSet subSet(
E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
return filter(
unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate);
}
@Override
public NavigableSet headSet(E toElement, boolean inclusive) {
return filter(unfiltered().headSet(toElement, inclusive), predicate);
}
@Override
public NavigableSet tailSet(E fromElement, boolean inclusive) {
return filter(unfiltered().tailSet(fromElement, inclusive), predicate);
}
}
/**
* Returns every possible list that can be formed by choosing one element
* from each of the given sets in order; the "n-ary
* Cartesian
* product" of the sets. For example:
Note that if any input set is empty, the Cartesian product will also be
* empty. If no sets at all are provided (an empty list), the resulting
* Cartesian product has one element, an empty list (counter-intuitive, but
* mathematically consistent).
*
*
Performance notes: while the cartesian product of sets of size
* {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
* consumption is much smaller. When the cartesian set is constructed, the
* input sets are merely copied. Only as the resulting set is iterated are the
* individual lists created, and these are not retained after iteration.
*
* @param sets the sets to choose elements from, in the order that
* the elements chosen from those sets should appear in the resulting
* lists
* @param any common base class shared by all axes (often just {@link
* Object})
* @return the Cartesian product, as an immutable set containing immutable
* lists
* @throws NullPointerException if {@code sets}, any one of the {@code sets},
* or any element of a provided set is null
* @since 2.0
*/
public static Set> cartesianProduct(List extends Set extends B>> sets) {
return CartesianSet.create(sets);
}
/**
* Returns every possible list that can be formed by choosing one element
* from each of the given sets in order; the "n-ary
* Cartesian
* product" of the sets. For example:
Note that if any input set is empty, the Cartesian product will also be
* empty. If no sets at all are provided (an empty list), the resulting
* Cartesian product has one element, an empty list (counter-intuitive, but
* mathematically consistent).
*
*
Performance notes: while the cartesian product of sets of size
* {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
* consumption is much smaller. When the cartesian set is constructed, the
* input sets are merely copied. Only as the resulting set is iterated are the
* individual lists created, and these are not retained after iteration.
*
* @param sets the sets to choose elements from, in the order that
* the elements chosen from those sets should appear in the resulting
* lists
* @param any common base class shared by all axes (often just {@link
* Object})
* @return the Cartesian product, as an immutable set containing immutable
* lists
* @throws NullPointerException if {@code sets}, any one of the {@code sets},
* or any element of a provided set is null
* @since 2.0
*/
public static Set> cartesianProduct(Set extends B>... sets) {
return cartesianProduct(Arrays.asList(sets));
}
private static final class CartesianSet extends ForwardingCollection>
implements Set> {
private final transient ImmutableList> axes;
private final transient CartesianList delegate;
static Set> create(List extends Set extends E>> sets) {
ImmutableList.Builder> axesBuilder =
new ImmutableList.Builder>(sets.size());
for (Set extends E> set : sets) {
ImmutableSet copy = ImmutableSet.copyOf(set);
if (copy.isEmpty()) {
return ImmutableSet.of();
}
axesBuilder.add(copy);
}
final ImmutableList> axes = axesBuilder.build();
ImmutableList> listAxes =
new ImmutableList>() {
@Override
public int size() {
return axes.size();
}
@Override
public List get(int index) {
return axes.get(index).asList();
}
@Override
boolean isPartialView() {
return true;
}
};
return new CartesianSet(axes, new CartesianList(listAxes));
}
private CartesianSet(ImmutableList> axes, CartesianList delegate) {
this.axes = axes;
this.delegate = delegate;
}
@Override
protected Collection> delegate() {
return delegate;
}
@Override
public boolean equals(@Nullable Object object) {
// Warning: this is broken if size() == 0, so it is critical that we
// substitute an empty ImmutableSet to the user in place of this
if (object instanceof CartesianSet) {
CartesianSet> that = (CartesianSet>) object;
return this.axes.equals(that.axes);
}
return super.equals(object);
}
@Override
public int hashCode() {
// Warning: this is broken if size() == 0, so it is critical that we
// substitute an empty ImmutableSet to the user in place of this
// It's a weird formula, but tests prove it works.
int adjust = size() - 1;
for (int i = 0; i < axes.size(); i++) {
adjust *= 31;
adjust = ~~adjust;
// in GWT, we have to deal with integer overflow carefully
}
int hash = 1;
for (Set axis : axes) {
hash = 31 * hash + (size() / axis.size() * axis.hashCode());
hash = ~~hash;
}
hash += adjust;
return ~~hash;
}
}
/**
* Returns the set of all possible subsets of {@code set}. For example,
* {@code powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{},
* {1}, {2}, {1, 2}}}.
*
*
Elements appear in these subsets in the same iteration order as they
* appeared in the input set. The order in which these subsets appear in the
* outer set is undefined. Note that the power set of the empty set is not the
* empty set, but a one-element set containing the empty set.
*
*
The returned set and its constituent sets use {@code equals} to decide
* whether two elements are identical, even if the input set uses a different
* concept of equivalence.
*
*
Performance notes: while the power set of a set with size {@code
* n} is of size {@code 2^n}, its memory usage is only {@code O(n)}. When the
* power set is constructed, the input set is merely copied. Only as the
* power set is iterated are the individual subsets created, and these subsets
* themselves occupy only a small constant amount of memory.
*
* @param set the set of elements to construct a power set from
* @return the power set, as an immutable set of immutable sets
* @throws IllegalArgumentException if {@code set} has more than 30 unique
* elements (causing the power set size to exceed the {@code int} range)
* @throws NullPointerException if {@code set} is or contains {@code null}
* @see Power set article at
* Wikipedia
* @since 4.0
*/
@GwtCompatible(serializable = false)
public static Set> powerSet(Set set) {
return new PowerSet(set);
}
private static final class SubSet extends AbstractSet {
private final ImmutableMap inputSet;
private final int mask;
SubSet(ImmutableMap inputSet, int mask) {
this.inputSet = inputSet;
this.mask = mask;
}
@Override
public Iterator iterator() {
return new UnmodifiableIterator() {
final ImmutableList elements = inputSet.keySet().asList();
int remainingSetBits = mask;
@Override
public boolean hasNext() {
return remainingSetBits != 0;
}
@Override
public E next() {
int index = Integer.numberOfTrailingZeros(remainingSetBits);
if (index == 32) {
throw new NoSuchElementException();
}
remainingSetBits &= ~(1 << index);
return elements.get(index);
}
};
}
@Override
public int size() {
return Integer.bitCount(mask);
}
@Override
public boolean contains(@Nullable Object o) {
Integer index = inputSet.get(o);
return index != null && (mask & (1 << index)) != 0;
}
}
private static final class PowerSet extends AbstractSet> {
final ImmutableMap inputSet;
PowerSet(Set input) {
this.inputSet = Maps.indexMap(input);
checkArgument(
inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size());
}
@Override
public int size() {
return 1 << inputSet.size();
}
@Override
public boolean isEmpty() {
return false;
}
@Override
public Iterator> iterator() {
return new AbstractIndexedListIterator>(size()) {
@Override
protected Set get(final int setBits) {
return new SubSet(inputSet, setBits);
}
};
}
@Override
public boolean contains(@Nullable Object obj) {
if (obj instanceof Set) {
Set> set = (Set>) obj;
return inputSet.keySet().containsAll(set);
}
return false;
}
@Override
public boolean equals(@Nullable Object obj) {
if (obj instanceof PowerSet) {
PowerSet> that = (PowerSet>) obj;
return inputSet.equals(that.inputSet);
}
return super.equals(obj);
}
@Override
public int hashCode() {
/*
* The sum of the sums of the hash codes in each subset is just the sum of
* each input element's hash code times the number of sets that element
* appears in. Each element appears in exactly half of the 2^n sets, so:
*/
return inputSet.keySet().hashCode() << (inputSet.size() - 1);
}
@Override
public String toString() {
return "powerSet(" + inputSet + ")";
}
}
/**
* An implementation for {@link Set#hashCode()}.
*/
static int hashCodeImpl(Set> s) {
int hashCode = 0;
for (Object o : s) {
hashCode += o != null ? o.hashCode() : 0;
hashCode = ~~hashCode;
// Needed to deal with unusual integer overflow in GWT.
}
return hashCode;
}
/**
* An implementation for {@link Set#equals(Object)}.
*/
static boolean equalsImpl(Set> s, @Nullable Object object) {
if (s == object) {
return true;
}
if (object instanceof Set) {
Set> o = (Set>) object;
try {
return s.size() == o.size() && s.containsAll(o);
} catch (NullPointerException ignored) {
return false;
} catch (ClassCastException ignored) {
return false;
}
}
return false;
}
/**
* Returns an unmodifiable view of the specified navigable set. This method
* allows modules to provide users with "read-only" access to internal
* navigable sets. Query operations on the returned set "read through" to the
* specified set, and attempts to modify the returned set, whether direct or
* via its collection views, result in an
* {@code UnsupportedOperationException}.
*
*
The returned navigable set will be serializable if the specified
* navigable set is serializable.
*
* @param set the navigable set for which an unmodifiable view is to be
* returned
* @return an unmodifiable view of the specified navigable set
* @since 12.0
*/
@GwtIncompatible // NavigableSet
public static NavigableSet unmodifiableNavigableSet(NavigableSet