All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.distribution.CauchyDistributionImpl Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;

/**
 * Default implementation of
 * {@link org.apache.commons.math.distribution.CauchyDistribution}.
 *
 * @since 1.1
 * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
 */
public class CauchyDistributionImpl extends AbstractContinuousDistribution
        implements CauchyDistribution, Serializable {

    /**
     * Default inverse cumulative probability accuracy
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier */
    private static final long serialVersionUID = 8589540077390120676L;

    /** The median of this distribution. */
    private double median = 0;

    /** The scale of this distribution. */
    private double scale = 1;

    /** Inverse cumulative probability accuracy */
    private final double solverAbsoluteAccuracy;

    /**
     * Creates cauchy distribution with the medain equal to zero and scale
     * equal to one.
     */
    public CauchyDistributionImpl(){
        this(0.0, 1.0);
    }

    /**
     * Create a cauchy distribution using the given median and scale.
     * @param median median for this distribution
     * @param s scale parameter for this distribution
     */
    public CauchyDistributionImpl(double median, double s){
        this(median, s, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Create a cauchy distribution using the given median and scale.
     * @param median median for this distribution
     * @param s scale parameter for this distribution
     * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
     * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
     * @since 2.1
     */
    public CauchyDistributionImpl(double median, double s, double inverseCumAccuracy) {
        super();
        setMedianInternal(median);
        setScaleInternal(s);
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * For this distribution, X, this method returns P(X < x).
     * @param x the value at which the CDF is evaluated.
     * @return CDF evaluated at x.
     */
    public double cumulativeProbability(double x) {
        return 0.5 + (FastMath.atan((x - median) / scale) / FastMath.PI);
    }

    /**
     * Access the median.
     * @return median for this distribution
     */
    public double getMedian() {
        return median;
    }

    /**
     * Access the scale parameter.
     * @return scale parameter for this distribution
     */
    public double getScale() {
        return scale;
    }

    /**
     * Returns the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     * @since 2.1
     */
    @Override
    public double density(double x) {
        final double dev = x - median;
        return (1 / FastMath.PI) * (scale / (dev * dev + scale * scale));
    }

    /**
     * For this distribution, X, this method returns the critical point x, such
     * that P(X < x) = p.
     * 

* Returns Double.NEGATIVE_INFINITY for p=0 and * Double.POSITIVE_INFINITY for p=1.

* * @param p the desired probability * @return x, such that P(X < x) = p * @throws IllegalArgumentException if p is not a valid * probability. */ @Override public double inverseCumulativeProbability(double p) { double ret; if (p < 0.0 || p > 1.0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0); } else if (p == 0) { ret = Double.NEGATIVE_INFINITY; } else if (p == 1) { ret = Double.POSITIVE_INFINITY; } else { ret = median + scale * FastMath.tan(FastMath.PI * (p - .5)); } return ret; } /** * Modify the median. * @param median for this distribution * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setMedian(double median) { setMedianInternal(median); } /** * Modify the median. * @param newMedian for this distribution */ private void setMedianInternal(double newMedian) { this.median = newMedian; } /** * Modify the scale parameter. * @param s scale parameter for this distribution * @throws IllegalArgumentException if sd is not positive. * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setScale(double s) { setScaleInternal(s); } /** * Modify the scale parameter. * @param s scale parameter for this distribution * @throws IllegalArgumentException if sd is not positive. */ private void setScaleInternal(double s) { if (s <= 0.0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.NOT_POSITIVE_SCALE, s); } scale = s; } /** * Access the domain value lower bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ @Override protected double getDomainLowerBound(double p) { double ret; if (p < .5) { ret = -Double.MAX_VALUE; } else { ret = median; } return ret; } /** * Access the domain value upper bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ @Override protected double getDomainUpperBound(double p) { double ret; if (p < .5) { ret = median; } else { ret = Double.MAX_VALUE; } return ret; } /** * Access the initial domain value, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return initial domain value */ @Override protected double getInitialDomain(double p) { double ret; if (p < .5) { ret = median - scale; } else if (p > .5) { ret = median + scale; } else { ret = median; } return ret; } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * Returns the lower bound of the support for this distribution. * The lower bound of the support of the Cauchy distribution is always * negative infinity, regardless of the parameters. * * @return lower bound of the support (always Double.NEGATIVE_INFINITY) * @since 2.2 */ public double getSupportLowerBound() { return Double.NEGATIVE_INFINITY; } /** * Returns the upper bound of the support for this distribution. * The upper bound of the support of the Cauchy distribution is always * positive infinity, regardless of the parameters. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) * @since 2.2 */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * Returns the mean. * * The mean is always undefined, regardless of the parameters. * * @return mean (always Double.NaN) * @since 2.2 */ public double getNumericalMean() { return Double.NaN; } /** * Returns the variance. * * The variance is always undefined, regardless of the parameters. * * @return variance (always Double.NaN) * @since 2.2 */ public double getNumericalVariance() { return Double.NaN; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy