All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.distribution.ChiSquaredDistributionImpl Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathException;

/**
 * The default implementation of {@link ChiSquaredDistribution}
 *
 * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
 */
public class ChiSquaredDistributionImpl
    extends AbstractContinuousDistribution
    implements ChiSquaredDistribution, Serializable  {

    /**
     * Default inverse cumulative probability accuracy
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier */
    private static final long serialVersionUID = -8352658048349159782L;

    /** Internal Gamma distribution. */
    private GammaDistribution gamma;

    /** Inverse cumulative probability accuracy */
    private final double solverAbsoluteAccuracy;

    /**
     * Create a Chi-Squared distribution with the given degrees of freedom.
     * @param df degrees of freedom.
     */
    public ChiSquaredDistributionImpl(double df) {
        this(df, new GammaDistributionImpl(df / 2.0, 2.0));
    }

    /**
     * Create a Chi-Squared distribution with the given degrees of freedom.
     * @param df degrees of freedom.
     * @param g the underlying gamma distribution used to compute probabilities.
     * @since 1.2
     * @deprecated as of 2.1 (to avoid possibly inconsistent state, the
     * "GammaDistribution" will be instantiated internally)
     */
    @Deprecated
    public ChiSquaredDistributionImpl(double df, GammaDistribution g) {
        super();
        setGammaInternal(g);
        setDegreesOfFreedomInternal(df);
        solverAbsoluteAccuracy = DEFAULT_INVERSE_ABSOLUTE_ACCURACY;
    }

    /**
     * Create a Chi-Squared distribution with the given degrees of freedom and
     * inverse cumulative probability accuracy.
     * @param df degrees of freedom.
     * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
     * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
     * @since 2.1
     */
    public ChiSquaredDistributionImpl(double df, double inverseCumAccuracy) {
        super();
        gamma = new GammaDistributionImpl(df / 2.0, 2.0);
        setDegreesOfFreedomInternal(df);
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * Modify the degrees of freedom.
     * @param degreesOfFreedom the new degrees of freedom.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setDegreesOfFreedom(double degreesOfFreedom) {
        setDegreesOfFreedomInternal(degreesOfFreedom);
    }
    /**
     * Modify the degrees of freedom.
     * @param degreesOfFreedom the new degrees of freedom.
     */
    private void setDegreesOfFreedomInternal(double degreesOfFreedom) {
        gamma.setAlpha(degreesOfFreedom / 2.0);
    }

    /**
     * Access the degrees of freedom.
     * @return the degrees of freedom.
     */
    public double getDegreesOfFreedom() {
        return gamma.getAlpha() * 2.0;
    }

    /**
     * Return the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     * @deprecated
     */
    @Deprecated
    public double density(Double x) {
        return density(x.doubleValue());
    }

    /**
     * Return the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     * @since 2.1
     */
    @Override
    public double density(double x) {
        return gamma.density(x);
    }

    /**
     * For this distribution, X, this method returns P(X < x).
     * @param x the value at which the CDF is evaluated.
     * @return CDF for this distribution.
     * @throws MathException if the cumulative probability can not be
     *            computed due to convergence or other numerical errors.
     */
    public double cumulativeProbability(double x) throws MathException {
        return gamma.cumulativeProbability(x);
    }

    /**
     * For this distribution, X, this method returns the critical point x, such
     * that P(X < x) = p.
     * 

* Returns 0 for p=0 and Double.POSITIVE_INFINITY for p=1.

* * @param p the desired probability * @return x, such that P(X < x) = p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p is not a valid * probability. */ @Override public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return 0d; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * Access the domain value lower bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ @Override protected double getDomainLowerBound(double p) { return Double.MIN_VALUE * gamma.getBeta(); } /** * Access the domain value upper bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ @Override protected double getDomainUpperBound(double p) { // NOTE: chi squared is skewed to the left // NOTE: therefore, P(X < μ) > .5 double ret; if (p < .5) { // use mean ret = getDegreesOfFreedom(); } else { // use max ret = Double.MAX_VALUE; } return ret; } /** * Access the initial domain value, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return initial domain value */ @Override protected double getInitialDomain(double p) { // NOTE: chi squared is skewed to the left // NOTE: therefore, P(X < μ) > .5 double ret; if (p < .5) { // use 1/2 mean ret = getDegreesOfFreedom() * .5; } else { // use mean ret = getDegreesOfFreedom(); } return ret; } /** * Modify the underlying gamma distribution. The caller is responsible for * insuring the gamma distribution has the proper parameter settings. * @param g the new distribution. * @since 1.2 made public * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setGamma(GammaDistribution g) { setGammaInternal(g); } /** * Modify the underlying gamma distribution. The caller is responsible for * insuring the gamma distribution has the proper parameter settings. * @param g the new distribution. * @since 1.2 made public */ private void setGammaInternal(GammaDistribution g) { this.gamma = g; } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * Returns the lower bound of the support for the distribution. * * The lower bound of the support is always 0 no matter the * degrees of freedom. * * @return lower bound of the support (always 0) * @since 2.2 */ public double getSupportLowerBound() { return 0; } /** * Returns the upper bound for the support for the distribution. * * The upper bound of the support is always positive infinity no matter the * degrees of freedom. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) * @since 2.2 */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * Returns the mean of the distribution. * * For k degrees of freedom, the mean is * k * * @return the mean * @since 2.2 */ public double getNumericalMean() { return getDegreesOfFreedom(); } /** * Returns the variance of the distribution. * * For k degrees of freedom, the variance is * 2 * k * * @return the variance * @since 2.2 */ public double getNumericalVariance() { return 2*getDegreesOfFreedom(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy