All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.distribution.ExponentialDistributionImpl Maven / Gradle / Ivy

There is a newer version: 0.40.13
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;

/**
 * The default implementation of {@link ExponentialDistribution}.
 *
 * @version $Revision: 1055914 $ $Date: 2011-01-06 16:34:34 +0100 (jeu. 06 janv. 2011) $
 */
public class ExponentialDistributionImpl extends AbstractContinuousDistribution
    implements ExponentialDistribution, Serializable {

    /**
     * Default inverse cumulative probability accuracy
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier */
    private static final long serialVersionUID = 2401296428283614780L;

    /** The mean of this distribution. */
    private double mean;

    /** Inverse cumulative probability accuracy */
    private final double solverAbsoluteAccuracy;

    /**
     * Create a exponential distribution with the given mean.
     * @param mean mean of this distribution.
     */
    public ExponentialDistributionImpl(double mean) {
        this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Create a exponential distribution with the given mean.
     * @param mean mean of this distribution.
     * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
     * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
     * @since 2.1
     */
    public ExponentialDistributionImpl(double mean, double inverseCumAccuracy) {
        super();
        setMeanInternal(mean);
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * Modify the mean.
     * @param mean the new mean.
     * @throws IllegalArgumentException if mean is not positive.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setMean(double mean) {
        setMeanInternal(mean);
    }
    /**
     * Modify the mean.
     * @param newMean the new mean.
     * @throws IllegalArgumentException if newMean is not positive.
     */
    private void setMeanInternal(double newMean) {
        if (newMean <= 0.0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  LocalizedFormats.NOT_POSITIVE_MEAN, newMean);
        }
        this.mean = newMean;
    }

    /**
     * Access the mean.
     * @return the mean.
     */
    public double getMean() {
        return mean;
    }

    /**
     * Return the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     * @deprecated - use density(double)
     */
    @Deprecated
    public double density(Double x) {
        return density(x.doubleValue());
    }

    /**
     * Return the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     * @since 2.1
     */
    @Override
    public double density(double x) {
        if (x < 0) {
            return 0;
        }
        return FastMath.exp(-x / mean) / mean;
    }

    /**
     * For this distribution, X, this method returns P(X < x).
     *
     * The implementation of this method is based on:
     * 
     *
     * @param x the value at which the CDF is evaluated.
     * @return CDF for this distribution.
     * @throws MathException if the cumulative probability can not be
     *            computed due to convergence or other numerical errors.
     */
    public double cumulativeProbability(double x) throws MathException{
        double ret;
        if (x <= 0.0) {
            ret = 0.0;
        } else {
            ret = 1.0 - FastMath.exp(-x / mean);
        }
        return ret;
    }

    /**
     * For this distribution, X, this method returns the critical point x, such
     * that P(X < x) = p.
     * 

* Returns 0 for p=0 and Double.POSITIVE_INFINITY for p=1.

* * @param p the desired probability * @return x, such that P(X < x) = p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p < 0 or p > 1. */ @Override public double inverseCumulativeProbability(double p) throws MathException { double ret; if (p < 0.0 || p > 1.0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0); } else if (p == 1.0) { ret = Double.POSITIVE_INFINITY; } else { ret = -mean * FastMath.log(1.0 - p); } return ret; } /** * Generates a random value sampled from this distribution. * *

Algorithm Description: Uses the Inversion * Method to generate exponentially distributed random values from * uniform deviates.

* * @return random value * @since 2.2 * @throws MathException if an error occurs generating the random value */ @Override public double sample() throws MathException { return randomData.nextExponential(mean); } /** * Access the domain value lower bound, based on p, used to * bracket a CDF root. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ @Override protected double getDomainLowerBound(double p) { return 0; } /** * Access the domain value upper bound, based on p, used to * bracket a CDF root. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ @Override protected double getDomainUpperBound(double p) { // NOTE: exponential is skewed to the left // NOTE: therefore, P(X < μ) > .5 if (p < .5) { // use mean return mean; } else { // use max return Double.MAX_VALUE; } } /** * Access the initial domain value, based on p, used to * bracket a CDF root. * * @param p the desired probability for the critical value * @return initial domain value */ @Override protected double getInitialDomain(double p) { // TODO: try to improve on this estimate // TODO: what should really happen here is not derive from AbstractContinuousDistribution // TODO: because the inverse cumulative distribution is simple. // Exponential is skewed to the left, therefore, P(X < μ) > .5 if (p < .5) { // use 1/2 mean return mean * .5; } else { // use mean return mean; } } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * Returns the lower bound of the support for the distribution. * * The lower bound of the support is always 0, regardless of the mean. * * @return lower bound of the support (always 0) * @since 2.2 */ public double getSupportLowerBound() { return 0; } /** * Returns the upper bound of the support for the distribution. * * The upper bound of the support is always positive infinity, * regardless of the mean. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) * @since 2.2 */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * Returns the mean of the distribution. * * For mean parameter k, the mean is * k * * @return the mean * @since 2.2 */ public double getNumericalMean() { return getMean(); } /** * Returns the variance of the distribution. * * For mean parameter k, the variance is * k^2 * * @return the variance * @since 2.2 */ public double getNumericalVariance() { final double m = getMean(); return m * m; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy