All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.distribution.PascalDistributionImpl Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.special.Beta;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.FastMath;

/**
 * The default implementation of {@link PascalDistribution}.
 * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
 * @since 1.2
 */
public class PascalDistributionImpl extends AbstractIntegerDistribution
    implements PascalDistribution, Serializable {

    /** Serializable version identifier */
    private static final long serialVersionUID = 6751309484392813623L;

    /** The number of successes */
    private int numberOfSuccesses;

    /** The probability of success */
    private double probabilityOfSuccess;

    /**
     * Create a Pascal distribution with the given number of trials and
     * probability of success.
     * @param r the number of successes
     * @param p the probability of success
     */
    public PascalDistributionImpl(int r, double p) {
        super();
        setNumberOfSuccessesInternal(r);
        setProbabilityOfSuccessInternal(p);
    }

    /**
     * Access the number of successes for this distribution.
     * @return the number of successes
     */
    public int getNumberOfSuccesses() {
        return numberOfSuccesses;
    }

    /**
     * Access the probability of success for this distribution.
     * @return the probability of success
     */
    public double getProbabilityOfSuccess() {
        return probabilityOfSuccess;
    }

    /**
     * Change the number of successes for this distribution.
     * @param successes the new number of successes
     * @throws IllegalArgumentException if successes is not
     *         positive.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setNumberOfSuccesses(int successes) {
        setNumberOfSuccessesInternal(successes);
    }

    /**
     * Change the number of successes for this distribution.
     * @param successes the new number of successes
     * @throws IllegalArgumentException if successes is not
     *         positive.
     */
    private void setNumberOfSuccessesInternal(int successes) {
        if (successes < 0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  LocalizedFormats.NEGATIVE_NUMBER_OF_SUCCESSES,
                  successes);
        }
        numberOfSuccesses = successes;
    }

    /**
     * Change the probability of success for this distribution.
     * @param p the new probability of success
     * @throws IllegalArgumentException if p is not a valid
     *         probability.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setProbabilityOfSuccess(double p) {
        setProbabilityOfSuccessInternal(p);
    }

    /**
     * Change the probability of success for this distribution.
     * @param p the new probability of success
     * @throws IllegalArgumentException if p is not a valid
     *         probability.
     */
    private void setProbabilityOfSuccessInternal(double p) {
        if (p < 0.0 || p > 1.0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0);
        }
        probabilityOfSuccess = p;
    }

    /**
     * Access the domain value lower bound, based on p, used to
     * bracket a PDF root.
     * @param p the desired probability for the critical value
     * @return domain value lower bound, i.e. P(X < lower bound) <
     *         p
     */
    @Override
    protected int getDomainLowerBound(double p) {
        return -1;
    }

    /**
     * Access the domain value upper bound, based on p, used to
     * bracket a PDF root.
     * @param p the desired probability for the critical value
     * @return domain value upper bound, i.e. P(X < upper bound) >
     *         p
     */
    @Override
    protected int getDomainUpperBound(double p) {
        // use MAX - 1 because MAX causes loop
        return Integer.MAX_VALUE - 1;
    }

    /**
     * For this distribution, X, this method returns P(X ≤ x).
     * @param x the value at which the PDF is evaluated
     * @return PDF for this distribution
     * @throws MathException if the cumulative probability can not be computed
     *         due to convergence or other numerical errors
     */
    @Override
    public double cumulativeProbability(int x) throws MathException {
        double ret;
        if (x < 0) {
            ret = 0.0;
        } else {
            ret = Beta.regularizedBeta(probabilityOfSuccess,
                numberOfSuccesses, x + 1);
        }
        return ret;
    }

    /**
     * For this distribution, X, this method returns P(X = x).
     * @param x the value at which the PMF is evaluated
     * @return PMF for this distribution
     */
    public double probability(int x) {
        double ret;
        if (x < 0) {
            ret = 0.0;
        } else {
            ret = MathUtils.binomialCoefficientDouble(x +
                  numberOfSuccesses - 1, numberOfSuccesses - 1) *
                  FastMath.pow(probabilityOfSuccess, numberOfSuccesses) *
                  FastMath.pow(1.0 - probabilityOfSuccess, x);
        }
        return ret;
    }

    /**
     * For this distribution, X, this method returns the largest x, such that
     * P(X ≤ x) ≤ p.
     * 

* Returns -1 for p=0 and Integer.MAX_VALUE * for p=1.

* @param p the desired probability * @return the largest x such that P(X ≤ x) <= p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p < 0 or p > 1 */ @Override public int inverseCumulativeProbability(final double p) throws MathException { int ret; // handle extreme values explicitly if (p == 0) { ret = -1; } else if (p == 1) { ret = Integer.MAX_VALUE; } else { ret = super.inverseCumulativeProbability(p); } return ret; } /** * Returns the lower bound of the support for the distribution. * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) * @since 2.2 */ public int getSupportLowerBound() { return 0; } /** * Returns the upper bound of the support for the distribution. * * The upper bound of the support is always positive infinity * no matter the parameters. Positive infinity is represented * by Integer.MAX_VALUE together with * {@link #isSupportUpperBoundInclusive()} being false * * @return upper bound of the support (always Integer.MAX_VALUE for positive infinity) * @since 2.2 */ public int getSupportUpperBound() { return Integer.MAX_VALUE; } /** * Returns the mean. * * For number of successes r and * probability of success p, the mean is * ( r * p ) / ( 1 - p ) * * @return the mean * @since 2.2 */ public double getNumericalMean() { final double p = getProbabilityOfSuccess(); final double r = getNumberOfSuccesses(); return ( r * p ) / ( 1 - p ); } /** * Returns the variance. * * For number of successes r and * probability of success p, the mean is * ( r * p ) / ( 1 - p )^2 * * @return the variance * @since 2.2 */ public double getNumericalVariance() { final double p = getProbabilityOfSuccess(); final double r = getNumberOfSuccesses(); final double pInv = 1 - p; return ( r * p ) / (pInv * pInv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy