All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.distribution.TDistributionImpl Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.special.Beta;
import org.apache.commons.math.special.Gamma;
import org.apache.commons.math.util.FastMath;

/**
 * Default implementation of
 * {@link org.apache.commons.math.distribution.TDistribution}.
 *
 * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
 */
public class TDistributionImpl
    extends AbstractContinuousDistribution
    implements TDistribution, Serializable  {

    /**
     * Default inverse cumulative probability accuracy
     * @since 2.1
    */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier */
    private static final long serialVersionUID = -5852615386664158222L;

    /** The degrees of freedom*/
    private double degreesOfFreedom;

    /** Inverse cumulative probability accuracy */
    private final double solverAbsoluteAccuracy;

    /**
     * Create a t distribution using the given degrees of freedom and the
     * specified inverse cumulative probability absolute accuracy.
     *
     * @param degreesOfFreedom the degrees of freedom.
     * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
     * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
     * @since 2.1
     */
    public TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy) {
        super();
        setDegreesOfFreedomInternal(degreesOfFreedom);
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * Create a t distribution using the given degrees of freedom.
     * @param degreesOfFreedom the degrees of freedom.
     */
    public TDistributionImpl(double degreesOfFreedom) {
        this(degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Modify the degrees of freedom.
     * @param degreesOfFreedom the new degrees of freedom.
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setDegreesOfFreedom(double degreesOfFreedom) {
        setDegreesOfFreedomInternal(degreesOfFreedom);
    }

    /**
     * Modify the degrees of freedom.
     * @param newDegreesOfFreedom the new degrees of freedom.
     */
    private void setDegreesOfFreedomInternal(double newDegreesOfFreedom) {
        if (newDegreesOfFreedom <= 0.0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  LocalizedFormats.NOT_POSITIVE_DEGREES_OF_FREEDOM,
                  newDegreesOfFreedom);
        }
        this.degreesOfFreedom = newDegreesOfFreedom;
    }

    /**
     * Access the degrees of freedom.
     * @return the degrees of freedom.
     */
    public double getDegreesOfFreedom() {
        return degreesOfFreedom;
    }

    /**
     * Returns the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     * @since 2.1
     */
    @Override
    public double density(double x) {
        final double n = degreesOfFreedom;
        final double nPlus1Over2 = (n + 1) / 2;
        return FastMath.exp(Gamma.logGamma(nPlus1Over2) - 0.5 * (FastMath.log(FastMath.PI) + FastMath.log(n)) -
                Gamma.logGamma(n/2) - nPlus1Over2 * FastMath.log(1 + x * x /n));
    }

    /**
     * For this distribution, X, this method returns P(X < x).
     * @param x the value at which the CDF is evaluated.
     * @return CDF evaluated at x.
     * @throws MathException if the cumulative probability can not be
     *            computed due to convergence or other numerical errors.
     */
    public double cumulativeProbability(double x) throws MathException{
        double ret;
        if (x == 0.0) {
            ret = 0.5;
        } else {
            double t =
                Beta.regularizedBeta(
                    degreesOfFreedom / (degreesOfFreedom + (x * x)),
                    0.5 * degreesOfFreedom,
                    0.5);
            if (x < 0.0) {
                ret = 0.5 * t;
            } else {
                ret = 1.0 - 0.5 * t;
            }
        }

        return ret;
    }

    /**
     * For this distribution, X, this method returns the critical point x, such
     * that P(X < x) = p.
     * 

* Returns Double.NEGATIVE_INFINITY for p=0 and * Double.POSITIVE_INFINITY for p=1.

* * @param p the desired probability * @return x, such that P(X < x) = p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p is not a valid * probability. */ @Override public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return Double.NEGATIVE_INFINITY; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * Access the domain value lower bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ @Override protected double getDomainLowerBound(double p) { return -Double.MAX_VALUE; } /** * Access the domain value upper bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ @Override protected double getDomainUpperBound(double p) { return Double.MAX_VALUE; } /** * Access the initial domain value, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return initial domain value */ @Override protected double getInitialDomain(double p) { return 0.0; } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * Returns the lower bound of the support for the distribution. * * The lower bound of the support is always negative infinity * no matter the parameters. * * @return lower bound of the support (always Double.NEGATIVE_INFINITY) * @since 2.2 */ public double getSupportLowerBound() { return Double.NEGATIVE_INFINITY; } /** * Returns the upper bound of the support for the distribution. * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) * @since 2.2 */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * Returns the mean. * * For degrees of freedom parameter df, the mean is *
    *
  • if df > 1 then 0
  • *
  • else undefined
  • *
* * @return the mean * @since 2.2 */ public double getNumericalMean() { final double df = getDegreesOfFreedom(); if (df > 1) { return 0; } return Double.NaN; } /** * Returns the variance. * * For degrees of freedom parameter df, the variance is *
    *
  • if df > 2 then df / (df - 2)
  • *
  • if 1 < df <= 2 then positive infinity
  • *
  • else undefined
  • *
* * @return the variance * @since 2.2 */ public double getNumericalVariance() { final double df = getDegreesOfFreedom(); if (df > 2) { return df / (df - 2); } if (df > 1 && df <= 2) { return Double.POSITIVE_INFINITY; } return Double.NaN; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy