All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.distribution.AbstractIntegerDistribution Maven / Gradle / Ivy

There is a newer version: 0.40.13
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.random.RandomDataImpl;
import org.apache.commons.math.util.FastMath;


/**
 * Base class for integer-valued discrete distributions.  Default
 * implementations are provided for some of the methods that do not vary
 * from distribution to distribution.
 *
 * @version $Revision: 1067494 $ $Date: 2011-02-05 20:49:07 +0100 (sam. 05 févr. 2011) $
 */
public abstract class AbstractIntegerDistribution extends AbstractDistribution
    implements IntegerDistribution, Serializable {

   /** Serializable version identifier */
    private static final long serialVersionUID = -1146319659338487221L;

    /**
     * RandomData instance used to generate samples from the distribution
     * @since 2.2
     */
    protected final RandomDataImpl randomData = new RandomDataImpl();

    /**
     * Default constructor.
     */
    protected AbstractIntegerDistribution() {
        super();
    }

    /**
     * For a random variable X whose values are distributed according
     * to this distribution, this method returns P(X ≤ x).  In other words,
     * this method represents the  (cumulative) distribution function, or
     * CDF, for this distribution.
     * 

* If x does not represent an integer value, the CDF is * evaluated at the greatest integer less than x. * * @param x the value at which the distribution function is evaluated. * @return cumulative probability that a random variable with this * distribution takes a value less than or equal to x * @throws MathException if the cumulative probability can not be * computed due to convergence or other numerical errors. */ public double cumulativeProbability(double x) throws MathException { return cumulativeProbability((int) FastMath.floor(x)); } /** * For a random variable X whose values are distributed according * to this distribution, this method returns P(x0 ≤ X ≤ x1). * * @param x0 the (inclusive) lower bound * @param x1 the (inclusive) upper bound * @return the probability that a random variable with this distribution * will take a value between x0 and x1, * including the endpoints. * @throws MathException if the cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if x0 > x1 */ @Override public double cumulativeProbability(double x0, double x1) throws MathException { if (x0 > x1) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1); } if (FastMath.floor(x0) < x0) { return cumulativeProbability(((int) FastMath.floor(x0)) + 1, (int) FastMath.floor(x1)); // don't want to count mass below x0 } else { // x0 is mathematical integer, so use as is return cumulativeProbability((int) FastMath.floor(x0), (int) FastMath.floor(x1)); } } /** * For a random variable X whose values are distributed according * to this distribution, this method returns P(X ≤ x). In other words, * this method represents the probability distribution function, or PDF, * for this distribution. * * @param x the value at which the PDF is evaluated. * @return PDF for this distribution. * @throws MathException if the cumulative probability can not be * computed due to convergence or other numerical errors. */ public abstract double cumulativeProbability(int x) throws MathException; /** * For a random variable X whose values are distributed according * to this distribution, this method returns P(X = x). In other words, this * method represents the probability mass function, or PMF, for the distribution. *

* If x does not represent an integer value, 0 is returned. * * @param x the value at which the probability density function is evaluated * @return the value of the probability density function at x */ public double probability(double x) { double fl = FastMath.floor(x); if (fl == x) { return this.probability((int) x); } else { return 0; } } /** * For a random variable X whose values are distributed according * to this distribution, this method returns P(x0 ≤ X ≤ x1). * * @param x0 the inclusive, lower bound * @param x1 the inclusive, upper bound * @return the cumulative probability. * @throws MathException if the cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if x0 > x1 */ public double cumulativeProbability(int x0, int x1) throws MathException { if (x0 > x1) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1); } return cumulativeProbability(x1) - cumulativeProbability(x0 - 1); } /** * For a random variable X whose values are distributed according * to this distribution, this method returns the largest x, such * that P(X ≤ x) ≤ p. * * @param p the desired probability * @return the largest x such that P(X ≤ x) <= p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p < 0 or p > 1 */ public int inverseCumulativeProbability(final double p) throws MathException{ if (p < 0.0 || p > 1.0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0); } // by default, do simple bisection. // subclasses can override if there is a better method. int x0 = getDomainLowerBound(p); int x1 = getDomainUpperBound(p); double pm; while (x0 < x1) { int xm = x0 + (x1 - x0) / 2; pm = checkedCumulativeProbability(xm); if (pm > p) { // update x1 if (xm == x1) { // this can happen with integer division // simply decrement x1 --x1; } else { // update x1 normally x1 = xm; } } else { // update x0 if (xm == x0) { // this can happen with integer division // simply increment x0 ++x0; } else { // update x0 normally x0 = xm; } } } // insure x0 is the correct critical point pm = checkedCumulativeProbability(x0); while (pm > p) { --x0; pm = checkedCumulativeProbability(x0); } return x0; } /** * Reseeds the random generator used to generate samples. * * @param seed the new seed * @since 2.2 */ public void reseedRandomGenerator(long seed) { randomData.reSeed(seed); } /** * Generates a random value sampled from this distribution. The default * implementation uses the * inversion method. * * @return random value * @since 2.2 * @throws MathException if an error occurs generating the random value */ public int sample() throws MathException { return randomData.nextInversionDeviate(this); } /** * Generates a random sample from the distribution. The default implementation * generates the sample by calling {@link #sample()} in a loop. * * @param sampleSize number of random values to generate * @since 2.2 * @return an array representing the random sample * @throws MathException if an error occurs generating the sample * @throws IllegalArgumentException if sampleSize is not positive */ public int[] sample(int sampleSize) throws MathException { if (sampleSize <= 0) { MathRuntimeException.createIllegalArgumentException(LocalizedFormats.NOT_POSITIVE_SAMPLE_SIZE, sampleSize); } int[] out = new int[sampleSize]; for (int i = 0; i < sampleSize; i++) { out[i] = sample(); } return out; } /** * Computes the cumulative probability function and checks for NaN values returned. * Throws MathException if the value is NaN. Rethrows any MathException encountered * evaluating the cumulative probability function. Throws * MathException if the cumulative probability function returns NaN. * * @param argument input value * @return cumulative probability * @throws MathException if the cumulative probability is NaN */ private double checkedCumulativeProbability(int argument) throws MathException { double result = Double.NaN; result = cumulativeProbability(argument); if (Double.isNaN(result)) { throw new MathException(LocalizedFormats.DISCRETE_CUMULATIVE_PROBABILITY_RETURNED_NAN, argument); } return result; } /** * Access the domain value lower bound, based on p, used to * bracket a PDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ protected abstract int getDomainLowerBound(double p); /** * Access the domain value upper bound, based on p, used to * bracket a PDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ protected abstract int getDomainUpperBound(double p); /** * Use this method to get information about whether the lower bound * of the support is inclusive or not. For discrete support, * only true here is meaningful. * * @return true (always but at Integer.MIN_VALUE because of the nature of discrete support) * @since 2.2 */ public boolean isSupportLowerBoundInclusive() { return true; } /** * Use this method to get information about whether the upper bound * of the support is inclusive or not. For discrete support, * only true here is meaningful. * * @return true (always but at Integer.MAX_VALUE because of the nature of discrete support) * @since 2.2 */ public boolean isSupportUpperBoundInclusive() { return true; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy