org.apache.commons.math.optimization.MultiStartUnivariateRealOptimizer Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.optimization;
import org.apache.commons.math.ConvergenceException;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.random.RandomGenerator;
import org.apache.commons.math.util.FastMath;
/**
* Special implementation of the {@link UnivariateRealOptimizer} interface adding
* multi-start features to an existing optimizer.
*
* This class wraps a classical optimizer to use it several times in
* turn with different starting points in order to avoid being trapped
* into a local extremum when looking for a global one.
*
* @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $
* @since 2.0
*/
public class MultiStartUnivariateRealOptimizer implements UnivariateRealOptimizer {
/** Serializable version identifier. */
private static final long serialVersionUID = 5983375963110961019L;
/** Underlying classical optimizer. */
private final UnivariateRealOptimizer optimizer;
/** Maximal number of iterations allowed. */
private int maxIterations;
/** Maximal number of evaluations allowed. */
private int maxEvaluations;
/** Number of iterations already performed for all starts. */
private int totalIterations;
/** Number of evaluations already performed for all starts. */
private int totalEvaluations;
/** Number of starts to go. */
private int starts;
/** Random generator for multi-start. */
private RandomGenerator generator;
/** Found optima. */
private double[] optima;
/** Found function values at optima. */
private double[] optimaValues;
/**
* Create a multi-start optimizer from a single-start optimizer
* @param optimizer single-start optimizer to wrap
* @param starts number of starts to perform (including the
* first one), multi-start is disabled if value is less than or
* equal to 1
* @param generator random generator to use for restarts
*/
public MultiStartUnivariateRealOptimizer(final UnivariateRealOptimizer optimizer,
final int starts,
final RandomGenerator generator) {
this.optimizer = optimizer;
this.totalIterations = 0;
this.starts = starts;
this.generator = generator;
this.optima = null;
setMaximalIterationCount(Integer.MAX_VALUE);
setMaxEvaluations(Integer.MAX_VALUE);
}
/** {@inheritDoc} */
public double getFunctionValue() {
return optimaValues[0];
}
/** {@inheritDoc} */
public double getResult() {
return optima[0];
}
/** {@inheritDoc} */
public double getAbsoluteAccuracy() {
return optimizer.getAbsoluteAccuracy();
}
/** {@inheritDoc} */
public int getIterationCount() {
return totalIterations;
}
/** {@inheritDoc} */
public int getMaximalIterationCount() {
return maxIterations;
}
/** {@inheritDoc} */
public int getMaxEvaluations() {
return maxEvaluations;
}
/** {@inheritDoc} */
public int getEvaluations() {
return totalEvaluations;
}
/** {@inheritDoc} */
public double getRelativeAccuracy() {
return optimizer.getRelativeAccuracy();
}
/** {@inheritDoc} */
public void resetAbsoluteAccuracy() {
optimizer.resetAbsoluteAccuracy();
}
/** {@inheritDoc} */
public void resetMaximalIterationCount() {
optimizer.resetMaximalIterationCount();
}
/** {@inheritDoc} */
public void resetRelativeAccuracy() {
optimizer.resetRelativeAccuracy();
}
/** {@inheritDoc} */
public void setAbsoluteAccuracy(double accuracy) {
optimizer.setAbsoluteAccuracy(accuracy);
}
/** {@inheritDoc} */
public void setMaximalIterationCount(int count) {
this.maxIterations = count;
}
/** {@inheritDoc} */
public void setMaxEvaluations(int maxEvaluations) {
this.maxEvaluations = maxEvaluations;
}
/** {@inheritDoc} */
public void setRelativeAccuracy(double accuracy) {
optimizer.setRelativeAccuracy(accuracy);
}
/** Get all the optima found during the last call to {@link
* #optimize(UnivariateRealFunction, GoalType, double, double) optimize}.
* The optimizer stores all the optima found during a set of
* restarts. The {@link #optimize(UnivariateRealFunction, GoalType,
* double, double) optimize} method returns the best point only. This
* method returns all the points found at the end of each starts,
* including the best one already returned by the {@link
* #optimize(UnivariateRealFunction, GoalType, double, double) optimize}
* method.
*
*
* The returned array as one element for each start as specified
* in the constructor. It is ordered with the results from the
* runs that did converge first, sorted from best to worst
* objective value (i.e in ascending order if minimizing and in
* descending order if maximizing), followed by Double.NaN elements
* corresponding to the runs that did not converge. This means all
* elements will be NaN if the {@link #optimize(UnivariateRealFunction,
* GoalType, double, double) optimize} method did throw a {@link
* ConvergenceException ConvergenceException}). This also means that
* if the first element is not NaN, it is the best point found across
* all starts.
* @return array containing the optima
* @exception IllegalStateException if {@link #optimize(UnivariateRealFunction,
* GoalType, double, double) optimize} has not been called
* @see #getOptimaValues()
*/
public double[] getOptima() throws IllegalStateException {
if (optima == null) {
throw MathRuntimeException.createIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
}
return optima.clone();
}
/** Get all the function values at optima found during the last call to {@link
* #optimize(UnivariateRealFunction, GoalType, double, double) optimize}.
*
* The returned array as one element for each start as specified
* in the constructor. It is ordered with the results from the
* runs that did converge first, sorted from best to worst
* objective value (i.e in ascending order if minimizing and in
* descending order if maximizing), followed by Double.NaN elements
* corresponding to the runs that did not converge. This means all
* elements will be NaN if the {@link #optimize(UnivariateRealFunction,
* GoalType, double, double) optimize} method did throw a {@link
* ConvergenceException ConvergenceException}). This also means that
* if the first element is not NaN, it is the best point found across
* all starts.
* @return array containing the optima
* @exception IllegalStateException if {@link #optimize(UnivariateRealFunction,
* GoalType, double, double) optimize} has not been called
* @see #getOptima()
*/
public double[] getOptimaValues() throws IllegalStateException {
if (optimaValues == null) {
throw MathRuntimeException.createIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
}
return optimaValues.clone();
}
/** {@inheritDoc} */
public double optimize(final UnivariateRealFunction f, final GoalType goalType,
final double min, final double max)
throws ConvergenceException, FunctionEvaluationException {
optima = new double[starts];
optimaValues = new double[starts];
totalIterations = 0;
totalEvaluations = 0;
// multi-start loop
for (int i = 0; i < starts; ++i) {
try {
optimizer.setMaximalIterationCount(maxIterations - totalIterations);
optimizer.setMaxEvaluations(maxEvaluations - totalEvaluations);
final double bound1 = (i == 0) ? min : min + generator.nextDouble() * (max - min);
final double bound2 = (i == 0) ? max : min + generator.nextDouble() * (max - min);
optima[i] = optimizer.optimize(f, goalType,
FastMath.min(bound1, bound2),
FastMath.max(bound1, bound2));
optimaValues[i] = optimizer.getFunctionValue();
} catch (FunctionEvaluationException fee) {
optima[i] = Double.NaN;
optimaValues[i] = Double.NaN;
} catch (ConvergenceException ce) {
optima[i] = Double.NaN;
optimaValues[i] = Double.NaN;
}
totalIterations += optimizer.getIterationCount();
totalEvaluations += optimizer.getEvaluations();
}
// sort the optima from best to worst, followed by NaN elements
int lastNaN = optima.length;
for (int i = 0; i < lastNaN; ++i) {
if (Double.isNaN(optima[i])) {
optima[i] = optima[--lastNaN];
optima[lastNaN + 1] = Double.NaN;
optimaValues[i] = optimaValues[--lastNaN];
optimaValues[lastNaN + 1] = Double.NaN;
}
}
double currX = optima[0];
double currY = optimaValues[0];
for (int j = 1; j < lastNaN; ++j) {
final double prevY = currY;
currX = optima[j];
currY = optimaValues[j];
if ((goalType == GoalType.MAXIMIZE) ^ (currY < prevY)) {
// the current element should be inserted closer to the beginning
int i = j - 1;
double mIX = optima[i];
double mIY = optimaValues[i];
while ((i >= 0) && ((goalType == GoalType.MAXIMIZE) ^ (currY < mIY))) {
optima[i + 1] = mIX;
optimaValues[i + 1] = mIY;
if (i-- != 0) {
mIX = optima[i];
mIY = optimaValues[i];
} else {
mIX = Double.NaN;
mIY = Double.NaN;
}
}
optima[i + 1] = currX;
optimaValues[i + 1] = currY;
currX = optima[j];
currY = optimaValues[j];
}
}
if (Double.isNaN(optima[0])) {
throw new OptimizationException(
LocalizedFormats.NO_CONVERGENCE_WITH_ANY_START_POINT,
starts);
}
// return the found point given the best objective function value
return optima[0];
}
/** {@inheritDoc} */
public double optimize(final UnivariateRealFunction f, final GoalType goalType,
final double min, final double max, final double startValue)
throws ConvergenceException, FunctionEvaluationException {
return optimize(f, goalType, min, max);
}
}