All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.random.EmpiricalDistributionImpl Maven / Gradle / Ivy

There is a newer version: 0.40.13
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.random;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.Serializable;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.stat.descriptive.StatisticalSummary;
import org.apache.commons.math.stat.descriptive.SummaryStatistics;
import org.apache.commons.math.util.FastMath;

/**
 * Implements EmpiricalDistribution interface.  This implementation
 * uses what amounts to the
 * 
 * Variable Kernel Method with Gaussian smoothing:

* Digesting the input file *

  1. Pass the file once to compute min and max.
  2. *
  3. Divide the range from min-max into binCount "bins."
  4. *
  5. Pass the data file again, computing bin counts and univariate * statistics (mean, std dev.) for each of the bins
  6. *
  7. Divide the interval (0,1) into subintervals associated with the bins, * with the length of a bin's subinterval proportional to its count.
* Generating random values from the distribution
    *
  1. Generate a uniformly distributed value in (0,1)
  2. *
  3. Select the subinterval to which the value belongs. *
  4. Generate a random Gaussian value with mean = mean of the associated * bin and std dev = std dev of associated bin.

*USAGE NOTES:

    *
  • The binCount is set by default to 1000. A good rule of thumb * is to set the bin count to approximately the length of the input file divided * by 10.
  • *
  • The input file must be a plain text file containing one valid numeric * entry per line.
  • *

* * @version $Revision: 1003886 $ $Date: 2010-10-02 23:04:44 +0200 (sam. 02 oct. 2010) $ */ public class EmpiricalDistributionImpl implements Serializable, EmpiricalDistribution { /** Serializable version identifier */ private static final long serialVersionUID = 5729073523949762654L; /** List of SummaryStatistics objects characterizing the bins */ private final List binStats; /** Sample statistics */ private SummaryStatistics sampleStats = null; /** Max loaded value */ private double max = Double.NEGATIVE_INFINITY; /** Min loaded value */ private double min = Double.POSITIVE_INFINITY; /** Grid size */ private double delta = 0d; /** number of bins */ private final int binCount; /** is the distribution loaded? */ private boolean loaded = false; /** upper bounds of subintervals in (0,1) "belonging" to the bins */ private double[] upperBounds = null; /** RandomData instance to use in repeated calls to getNext() */ private final RandomData randomData = new RandomDataImpl(); /** * Creates a new EmpiricalDistribution with the default bin count. */ public EmpiricalDistributionImpl() { binCount = 1000; binStats = new ArrayList(); } /** * Creates a new EmpiricalDistribution with the specified bin count. * * @param binCount number of bins */ public EmpiricalDistributionImpl(int binCount) { this.binCount = binCount; binStats = new ArrayList(); } /** * Computes the empirical distribution from the provided * array of numbers. * * @param in the input data array */ public void load(double[] in) { DataAdapter da = new ArrayDataAdapter(in); try { da.computeStats(); fillBinStats(in); } catch (IOException e) { throw new MathRuntimeException(e); } loaded = true; } /** * Computes the empirical distribution using data read from a URL. * @param url url of the input file * * @throws IOException if an IO error occurs */ public void load(URL url) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(url.openStream())); try { DataAdapter da = new StreamDataAdapter(in); da.computeStats(); if (sampleStats.getN() == 0) { throw MathRuntimeException.createEOFException(LocalizedFormats.URL_CONTAINS_NO_DATA, url); } in = new BufferedReader(new InputStreamReader(url.openStream())); fillBinStats(in); loaded = true; } finally { try { in.close(); } catch (IOException ex) { // ignore } } } /** * Computes the empirical distribution from the input file. * * @param file the input file * @throws IOException if an IO error occurs */ public void load(File file) throws IOException { BufferedReader in = new BufferedReader(new FileReader(file)); try { DataAdapter da = new StreamDataAdapter(in); da.computeStats(); in = new BufferedReader(new FileReader(file)); fillBinStats(in); loaded = true; } finally { try { in.close(); } catch (IOException ex) { // ignore } } } /** * Provides methods for computing sampleStats and * beanStats abstracting the source of data. */ private abstract class DataAdapter{ /** * Compute bin stats. * * @throws IOException if an error occurs computing bin stats */ public abstract void computeBinStats() throws IOException; /** * Compute sample statistics. * * @throws IOException if an error occurs computing sample stats */ public abstract void computeStats() throws IOException; } /** * Factory of DataAdapter objects. For every supported source * of data (array of doubles, file, etc.) an instance of the proper object * is returned. */ private class DataAdapterFactory{ /** * Creates a DataAdapter from a data object * * @param in object providing access to the data * @return DataAdapter instance */ public DataAdapter getAdapter(Object in) { if (in instanceof BufferedReader) { BufferedReader inputStream = (BufferedReader) in; return new StreamDataAdapter(inputStream); } else if (in instanceof double[]) { double[] inputArray = (double[]) in; return new ArrayDataAdapter(inputArray); } else { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.INPUT_DATA_FROM_UNSUPPORTED_DATASOURCE, in.getClass().getName(), BufferedReader.class.getName(), double[].class.getName()); } } } /** * DataAdapter for data provided through some input stream */ private class StreamDataAdapter extends DataAdapter{ /** Input stream providing access to the data */ private BufferedReader inputStream; /** * Create a StreamDataAdapter from a BufferedReader * * @param in BufferedReader input stream */ public StreamDataAdapter(BufferedReader in){ super(); inputStream = in; } /** {@inheritDoc} */ @Override public void computeBinStats() throws IOException { String str = null; double val = 0.0d; while ((str = inputStream.readLine()) != null) { val = Double.parseDouble(str); SummaryStatistics stats = binStats.get(findBin(val)); stats.addValue(val); } inputStream.close(); inputStream = null; } /** {@inheritDoc} */ @Override public void computeStats() throws IOException { String str = null; double val = 0.0; sampleStats = new SummaryStatistics(); while ((str = inputStream.readLine()) != null) { val = Double.valueOf(str).doubleValue(); sampleStats.addValue(val); } inputStream.close(); inputStream = null; } } /** * DataAdapter for data provided as array of doubles. */ private class ArrayDataAdapter extends DataAdapter { /** Array of input data values */ private double[] inputArray; /** * Construct an ArrayDataAdapter from a double[] array * * @param in double[] array holding the data */ public ArrayDataAdapter(double[] in){ super(); inputArray = in; } /** {@inheritDoc} */ @Override public void computeStats() throws IOException { sampleStats = new SummaryStatistics(); for (int i = 0; i < inputArray.length; i++) { sampleStats.addValue(inputArray[i]); } } /** {@inheritDoc} */ @Override public void computeBinStats() throws IOException { for (int i = 0; i < inputArray.length; i++) { SummaryStatistics stats = binStats.get(findBin(inputArray[i])); stats.addValue(inputArray[i]); } } } /** * Fills binStats array (second pass through data file). * * @param in object providing access to the data * @throws IOException if an IO error occurs */ private void fillBinStats(Object in) throws IOException { // Set up grid min = sampleStats.getMin(); max = sampleStats.getMax(); delta = (max - min)/(Double.valueOf(binCount)).doubleValue(); // Initialize binStats ArrayList if (!binStats.isEmpty()) { binStats.clear(); } for (int i = 0; i < binCount; i++) { SummaryStatistics stats = new SummaryStatistics(); binStats.add(i,stats); } // Filling data in binStats Array DataAdapterFactory aFactory = new DataAdapterFactory(); DataAdapter da = aFactory.getAdapter(in); da.computeBinStats(); // Assign upperBounds based on bin counts upperBounds = new double[binCount]; upperBounds[0] = ((double) binStats.get(0).getN()) / (double) sampleStats.getN(); for (int i = 1; i < binCount-1; i++) { upperBounds[i] = upperBounds[i-1] + ((double) binStats.get(i).getN()) / (double) sampleStats.getN(); } upperBounds[binCount-1] = 1.0d; } /** * Returns the index of the bin to which the given value belongs * * @param value the value whose bin we are trying to find * @return the index of the bin containing the value */ private int findBin(double value) { return FastMath.min( FastMath.max((int) FastMath.ceil((value- min) / delta) - 1, 0), binCount - 1); } /** * Generates a random value from this distribution. * * @return the random value. * @throws IllegalStateException if the distribution has not been loaded */ public double getNextValue() throws IllegalStateException { if (!loaded) { throw MathRuntimeException.createIllegalStateException(LocalizedFormats.DISTRIBUTION_NOT_LOADED); } // Start with a uniformly distributed random number in (0,1) double x = FastMath.random(); // Use this to select the bin and generate a Gaussian within the bin for (int i = 0; i < binCount; i++) { if (x <= upperBounds[i]) { SummaryStatistics stats = binStats.get(i); if (stats.getN() > 0) { if (stats.getStandardDeviation() > 0) { // more than one obs return randomData.nextGaussian (stats.getMean(),stats.getStandardDeviation()); } else { return stats.getMean(); // only one obs in bin } } } } throw new MathRuntimeException(LocalizedFormats.NO_BIN_SELECTED); } /** * Returns a {@link StatisticalSummary} describing this distribution. * Preconditions:
    *
  • the distribution must be loaded before invoking this method
* * @return the sample statistics * @throws IllegalStateException if the distribution has not been loaded */ public StatisticalSummary getSampleStats() { return sampleStats; } /** * Returns the number of bins. * * @return the number of bins. */ public int getBinCount() { return binCount; } /** * Returns a List of {@link SummaryStatistics} instances containing * statistics describing the values in each of the bins. The list is * indexed on the bin number. * * @return List of bin statistics. */ public List getBinStats() { return binStats; } /** *

Returns a fresh copy of the array of upper bounds for the bins. * Bins are:
* [min,upperBounds[0]],(upperBounds[0],upperBounds[1]],..., * (upperBounds[binCount-2], upperBounds[binCount-1] = max].

* *

Note: In versions 1.0-2.0 of commons-math, this method * incorrectly returned the array of probability generator upper * bounds now returned by {@link #getGeneratorUpperBounds()}.

* * @return array of bin upper bounds * @since 2.1 */ public double[] getUpperBounds() { double[] binUpperBounds = new double[binCount]; binUpperBounds[0] = min + delta; for (int i = 1; i < binCount - 1; i++) { binUpperBounds[i] = binUpperBounds[i-1] + delta; } binUpperBounds[binCount - 1] = max; return binUpperBounds; } /** *

Returns a fresh copy of the array of upper bounds of the subintervals * of [0,1] used in generating data from the empirical distribution. * Subintervals correspond to bins with lengths proportional to bin counts.

* *

In versions 1.0-2.0 of commons-math, this array was (incorrectly) returned * by {@link #getUpperBounds()}.

* * @since 2.1 * @return array of upper bounds of subintervals used in data generation */ public double[] getGeneratorUpperBounds() { int len = upperBounds.length; double[] out = new double[len]; System.arraycopy(upperBounds, 0, out, 0, len); return out; } /** * Property indicating whether or not the distribution has been loaded. * * @return true if the distribution has been loaded */ public boolean isLoaded() { return loaded; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy