org.languagetool.languagemodel.BaseLanguageModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of languagetool-core Show documentation
Show all versions of languagetool-core Show documentation
LanguageTool is an Open Source proofreading software for English, French, German, Polish, Romanian, and more than 20 other languages. It finds many errors that a simple spell checker cannot detect like mixing up there/their and it detects some grammar problems.
/* LanguageTool, a natural language style checker
* Copyright (C) 2015 Daniel Naber (http://www.danielnaber.de)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
* USA
*/
package org.languagetool.languagemodel;
import org.languagetool.rules.ngrams.Probability;
import java.util.List;
import java.util.Locale;
/**
* The algorithm of a language model, independent of the way data
* is stored (see sub classes for that).
* @since 3.2
*/
public abstract class BaseLanguageModel implements LanguageModel {
private static final boolean DEBUG = false;
private Long totalTokenCount;
public BaseLanguageModel() {
}
@Override
public Probability getPseudoProbability(List context) {
if (this.totalTokenCount == null) {
this.totalTokenCount = getTotalTokenCount();
}
int maxCoverage = 0;
int coverage = 0;
// TODO: lm.getCount("_START_") returns 0 for Google data -- see getCount(String) in LuceneLanguageModel
long firstWordCount = getCount(context.get(0));
maxCoverage++;
if (firstWordCount > 0) {
coverage++;
}
// chain rule of probability (https://www.coursera.org/course/nlp, "Introduction to N-grams" and "Estimating N-gram Probabilities"),
// https://www.ibm.com/developerworks/community/blogs/nlp/entry/the_chain_rule_of_probability?lang=en
double p = (double) (firstWordCount + 1) / (totalTokenCount + 1);
debug(" P for %s: %.20f (%d)\n", context.get(0), p, firstWordCount);
long totalCount = 0;
for (int i = 2; i <= context.size(); i++) {
List subList = context.subList(0, i);
long phraseCount = getCount(subList);
//System.out.println(subList + " -> " +phraseCount);
if (subList.size() == 3) {
totalCount = phraseCount;
}
double thisP = (double) (phraseCount + 1) / (firstWordCount + 1);
/* boosting 4grams seems to improve f-measure a tiny bit:
if (subList.size() == 4 && phraseCount > 0) {
thisP = 100;
}*/
maxCoverage++;
debug(" P for " + subList + ": %.20f (%d)\n", thisP, phraseCount);
if (phraseCount > 0) {
coverage++;
}
p *= thisP;
}
debug(" " + String.join(" ", context) + " => %.20f\n", p);
return new Probability(p, (float)coverage/maxCoverage, totalCount);
}
/**
* Get the occurrence count for {@code token}.
*/
public abstract long getCount(String token1);
/**
* Get the occurrence count for the given token sequence.
*/
public abstract long getCount(List tokens);
public abstract long getTotalTokenCount();
private void debug(String message, Object... vars) {
if (DEBUG) {
System.out.printf(Locale.ENGLISH, message, vars);
}
}
}