All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ucar.nc2.ft2.coverage.adapter.GeoGridCoordinate2D Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 1998-2018 John Caron and University Corporation for Atmospheric Research/Unidata
 * See LICENSE for license information.
 */
package ucar.nc2.ft2.coverage.adapter;

import ucar.nc2.dataset.CoordinateAxis2D;
import ucar.ma2.ArrayDouble;
import ucar.ma2.MAMath;

/**
 * fork ucar.nc2.dt.grid.GridCoordinate2D for adaption of GridCoverage
 *
 * 2D Coordinate System has lat(x,y) and lon(x,y).
 * This class implements finding the index (i,j) from (lat, lon) coord.
 * This is for "one-off" computation, not a systematic lookup table for all points in a pixel array.
 * Hueristic search of the 2D space for the cell that contains the point.
 *
 * @author caron
 * @since Jul 10, 2009
 */
public class GeoGridCoordinate2D {
  static private boolean debug = false;
  static private final org.slf4j.Logger log = org.slf4j.LoggerFactory.getLogger(GeoGridCoordinate2D.class);

  private final CoordinateAxis2D latCoord, lonCoord;
  private final int nrows, ncols;
  private ArrayDouble.D2 latEdge, lonEdge;
  private MAMath.MinMax latMinMax, lonMinMax;

  GeoGridCoordinate2D(CoordinateAxis2D latCoord, CoordinateAxis2D lonCoord) {
    this.latCoord = latCoord;
    this.lonCoord = lonCoord;

    assert latCoord.getRank() == 2;
    assert lonCoord.getRank() == 2;
    int[] shape = latCoord.getShape();

    nrows = shape[0];
    ncols = shape[1];
  }

  private void findBounds() {
    if (lonMinMax != null) return;

    lonEdge = lonCoord.getEdges();
    latEdge = latCoord.getEdges();

    // assume missing values have been converted to NaNs
    latMinMax = MAMath.getMinMax(latEdge);
    lonMinMax = MAMath.getMinMax(lonEdge);

    if (debug)
      System.out.printf("Bounds (%d %d): lat= (%f,%f) lon = (%f,%f) %n", nrows, ncols, latMinMax.min, latMinMax.max, lonMinMax.min, lonMinMax.max);
  }

  // brute force
  public boolean findCoordElementForce(double wantLat, double wantLon, int[] rectIndex) {
    findBounds();
    if (wantLat < latMinMax.min) return false;
    if (wantLat > latMinMax.max) return false;
    if (wantLon < lonMinMax.min) return false;
    if (wantLon > lonMinMax.max) return false;

    boolean saveDebug = debug;
    debug = false;
    for (int row=0; row latMinMax.max) return false;
    if (wantLon < lonMinMax.min) return false;
    if (wantLon > lonMinMax.max) return false;

    double gradientLat = (latMinMax.max - latMinMax.min) / nrows;
    double gradientLon = (lonMinMax.max - lonMinMax.min) / ncols;

    double diffLat = wantLat - latMinMax.min;
    double diffLon = wantLon - lonMinMax.min;

    // initial guess
    rectIndex[0] = (int) Math.round(diffLat / gradientLat);  // row
    rectIndex[1] =(int) Math.round(diffLon / gradientLon);  // col

    int count = 0;
    while (true) {
      count++;
      if (debug) System.out.printf("%nIteration %d %n", count);
      if (contains(wantLat, wantLon, rectIndex))
        return true;

      if (!jump2(wantLat, wantLon, rectIndex)) return false;

      // bouncing around
      if (count > 10) {
        // last ditch attempt
        return incr(wantLat, wantLon, rectIndex);
        //if (!ok)
        //  log.error("findCoordElement didnt converge lat,lon = "+wantLat+" "+ wantLon);
        //return ok;
      }
    }
  }

  /**
   * Is the point (lat,lon) contained in the (row, col) rectangle ?
   *
   * @param wantLat   lat of point
   * @param wantLon   lon of point
   * @param rectIndex rectangle row, col, will be clipped to [0, nrows), [0, ncols)
   * @return true if contained
   */
  private boolean containsOld(double wantLat, double wantLon, int[] rectIndex) {
    rectIndex[0] = Math.max( Math.min(rectIndex[0], nrows-1), 0);
    rectIndex[1] = Math.max( Math.min(rectIndex[1], ncols-1), 0);

    int row = rectIndex[0];
    int col = rectIndex[1];

    if (debug) System.out.printf(" (%d,%d) contains (%f,%f) in (lat=%f %f) (lon=%f %f) ?%n",
            rectIndex[0], rectIndex[1], wantLat, wantLon,
            latEdge.get(row, col), latEdge.get(row + 1, col), lonEdge.get(row, col), lonEdge.get(row, col + 1));

    if (wantLat < latEdge.get(row, col)) return false;
    if (wantLat > latEdge.get(row + 1, col)) return false;
    if (wantLon < lonEdge.get(row, col)) return false;
    if (wantLon > lonEdge.get(row, col + 1)) return false;
    return true;
  }

  /**
   * Is the point (lat,lon) contained in the (row, col) rectangle ?
   *
   * @param wantLat   lat of point
   * @param wantLon   lon of point
   * @param rectIndex rectangle row, col, will be clipped to [0, nrows), [0, ncols)
   * @return true if contained
   */

/*
  http://mathforum.org/library/drmath/view/54386.html

      Given any three points on the plane (x0,y0), (x1,y1), and
  (x2,y2), the area of the triangle determined by them is
  given by the following formula:

        1 | x0 y0 1 |
    A = - | x1 y1 1 |,
        2 | x2 y2 1 |

  where the vertical bars represent the determinant.
  the value of the expression above is:

       (.5)(x1*y2 - y1*x2 -x0*y2 + y0*x2 + x0*y1 - y0*x1)

  The amazing thing is that A is positive if the three points are
  taken in a counter-clockwise orientation, and negative otherwise.

  To be inside a rectangle (or any convex body), as you trace
  around in a clockwise direction from p1 to p2 to p3 to p4 and
  back to p1, the "areas" of triangles p1 p2 p, p2 p3 p, p3 p4 p,
  and p4 p1 p must all be positive.  If you don't know the
  orientation of your rectangle, then they must either all be
  positive or all be negative.

  this method works for arbitrary convex regions oo the plane.
*/
  private boolean contains(double wantLat, double wantLon, int[] rectIndex) {
    rectIndex[0] = Math.max( Math.min(rectIndex[0], nrows-1), 0);
    rectIndex[1] = Math.max( Math.min(rectIndex[1], ncols-1), 0);

    int row = rectIndex[0];
    int col = rectIndex[1];

    double x1 = lonEdge.get(row, col);
    double y1 = latEdge.get(row, col);

    double x2 = lonEdge.get(row, col+1);
    double y2 = latEdge.get(row, col+1);

    double x3 = lonEdge.get(row+1, col+1);
    double y3 = latEdge.get(row + 1, col+1);

    double x4 = lonEdge.get(row + 1, col);
    double y4 = latEdge.get(row+1, col);

    // must all have same determinate sign
    boolean sign = detIsPositive(x1, y1, x2, y2, wantLon, wantLat);
    if (sign != detIsPositive(x2, y2, x3, y3, wantLon, wantLat)) return false;
    if (sign != detIsPositive(x3, y3, x4, y4, wantLon, wantLat)) return false;
    if (sign != detIsPositive(x4, y4, x1, y1, wantLon, wantLat)) return false;

    return true;
  }

  private boolean detIsPositive(double x0, double y0, double x1, double y1, double x2, double y2) {
    double det = (x1*y2 - y1*x2 -x0*y2 + y0*x2 + x0*y1 - y0*x1);
    if (det == 0)
      log.warn("determinate = 0 on lat/lon=" + latCoord.getFullName() + ", " + latCoord.getFullName()); // LOOK needed?
    return det > 0;
  }

  private boolean jumpOld(double wantLat, double wantLon, int[] rectIndex) {
    int row = Math.max( Math.min(rectIndex[0], nrows-1), 0);
    int col = Math.max(Math.min(rectIndex[1], ncols - 1), 0);
    double gradientLat = latEdge.get(row + 1, col) - latEdge.get(row, col);
    double gradientLon = lonEdge.get(row, col + 1) - lonEdge.get(row, col);

    double diffLat = wantLat - latEdge.get(row, col);
    double diffLon = wantLon - lonEdge.get(row, col);

    int drow = (int) Math.round(diffLat / gradientLat);
    int dcol = (int) Math.round(diffLon / gradientLon);

    if (debug) System.out.printf("   jump from %d %d (grad=%f %f) (diff=%f %f) (delta=%d %d)",
            row, col, gradientLat, gradientLon,
            diffLat, diffLon, drow, dcol);

    if ((drow == 0) && (dcol == 0)) {
      if (debug) System.out.printf("%n   incr:");
      return incr(wantLat, wantLon, rectIndex);
    } else {
      rectIndex[0] = Math.max( Math.min(row + drow, nrows-1), 0);
      rectIndex[1] = Math.max( Math.min(col + dcol, ncols-1), 0);
      if (debug) System.out.printf(" to (%d %d)%n", rectIndex[0], rectIndex[1]);
      if ((row == rectIndex[0]) && (col == rectIndex[1])) return false; // nothing has changed
    }

    return true;
  }

  /**
   * jump to a new row,col
   * @param wantLat want this lat
   * @param wantLon want this lon
   * @param rectIndex starting row, col and replaced by new guess
   * @return true if new guess, false if failure
   */
  /*
    choose x, y such that (matrix multiply) :

    (wantx) = (fxx fxy)  (x)
    (wanty)   (fyx fyy)  (y)

     where fxx = d(fx)/dx  ~= delta lon in lon direction
     where fxy = d(fx)/dy  ~= delta lon in lat direction
     where fyx = d(fy)/dx  ~= delta lat in lon direction
     where fyy = d(fy)/dy  ~= delta lat in lat direction

    2 linear equations in 2 unknowns, solve in usual way
   */
  private boolean jump2(double wantLat, double wantLon, int[] rectIndex) {
    int row = Math.max( Math.min(rectIndex[0], nrows-1), 0);
    int col = Math.max(Math.min(rectIndex[1], ncols - 1), 0);
    double lat = latEdge.get(row, col);
    double lon =  lonEdge.get(row, col);
    double diffLat = wantLat - lat;
    double diffLon = wantLon - lon;

    double dlatdy = latEdge.get(row + 1, col) - lat;
    double dlatdx = latEdge.get(row, col+1) - lat;
    double dlondx = lonEdge.get(row, col + 1) - lon;
    double dlondy = lonEdge.get(row + 1, col) - lon;

    // solve for dlon

    double dx =  (diffLon - dlondy * diffLat / dlatdy) / (dlondx - dlatdx * dlondy / dlatdy);
    // double dy =  (diffLat - dlatdx * diffLon / dlondx) / (dlatdy - dlatdx * dlondy / dlondx);
    double dy =  (diffLat - dlatdx * dx) / dlatdy;

    if (debug) System.out.printf("   jump from %d %d (dlondx=%f dlondy=%f dlatdx=%f dlatdy=%f) (diffLat,Lon=%f %f) (deltalat,Lon=%f %f)",
            row, col, dlondx, dlondy, dlatdx, dlatdy,
            diffLat, diffLon, dy, dx);

    int drow = (int) Math.round(dy);
    int dcol = (int) Math.round(dx);

    if ((drow == 0) && (dcol == 0)) {
      if (debug) System.out.printf("%n   incr:");
      return incr(wantLat, wantLon, rectIndex);
    } else {
      rectIndex[0] = Math.max( Math.min(row + drow, nrows-1), 0);
      rectIndex[1] = Math.max( Math.min(col + dcol, ncols-1), 0);
      if (debug) System.out.printf(" to (%d %d)%n", rectIndex[0], rectIndex[1]);
      if ((row == rectIndex[0]) && (col == rectIndex[1])) return false; // nothing has changed
    }

    return true;
  }

  private boolean incr(double wantLat, double wantLon, int[] rectIndex) {
    int row = rectIndex[0];
    int col = rectIndex[1];
    double diffLat = wantLat - latEdge.get(row, col);
    double diffLon = wantLon - lonEdge.get(row, col);

    if (Math.abs(diffLat) > Math.abs(diffLon)) { // try lat first
      rectIndex[0] = row + ((diffLat > 0) ? 1 : -1);
      if (contains(wantLat, wantLon,  rectIndex)) return true;
      rectIndex[1] = col + ((diffLon > 0) ? 1 : -1);
      if (contains(wantLat, wantLon,  rectIndex)) return true;
    } else {
      rectIndex[1] = col + ((diffLon > 0) ? 1 : -1);
      if (contains(wantLat, wantLon,  rectIndex)) return true;
      rectIndex[0] = row + ((diffLat > 0) ? 1 : -1);
      if (contains(wantLat, wantLon,  rectIndex)) return true;
    }

    // back to original, do box search
    rectIndex[0] = row;
    rectIndex[1] = col;
    return box9(wantLat, wantLon, rectIndex);
  }

  // we think its got to be in one of the 9 boxes around rectIndex
  private boolean box9(double wantLat, double wantLon, int[] rectIndex) {
    int row = rectIndex[0];
    int minrow = Math.max(row-1, 0);
    int maxrow = Math.min(row+1, nrows);

    int col = rectIndex[1];
    int mincol= Math.max(col-1, 0);
    int maxcol = Math.min(col+1, ncols);

    if (debug) System.out.printf("%n   box9:");
    for (int i=minrow; i<=maxrow; i++)
      for (int j=mincol; j<=maxcol; j++) {
        rectIndex[0] = i;
        rectIndex[1] = j;
        if (contains(wantLat, wantLon,  rectIndex)) return true;
      }

    return false;
  }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy