org.lenskit.cli.commands.Predict Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lenskit-cli Show documentation
Show all versions of lenskit-cli Show documentation
Command-line tools for interacting with LensKit.
/*
* LensKit, an open source recommender systems toolkit.
* Copyright 2010-2014 LensKit Contributors. See CONTRIBUTORS.md.
* Work on LensKit has been funded by the National Science Foundation under
* grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package org.lenskit.cli.commands;
import com.google.auto.service.AutoService;
import com.google.common.base.Stopwatch;
import net.sourceforge.argparse4j.inf.ArgumentParser;
import net.sourceforge.argparse4j.inf.Namespace;
import org.lenskit.api.RecommenderBuildException;
import org.lenskit.data.dao.ItemNameDAO;
import org.lenskit.LenskitRecommender;
import org.lenskit.LenskitRecommenderEngine;
import org.lenskit.api.RatingPredictor;
import org.lenskit.cli.Command;
import org.lenskit.cli.util.InputData;
import org.lenskit.cli.util.RecommenderLoader;
import org.lenskit.cli.util.ScriptEnvironment;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
import java.util.List;
import java.util.Map;
/**
* Predict item ratings for a user.
*
* @since 2.1
* @author GroupLens Research
*/
@AutoService(Command.class)
public class Predict implements Command {
private final Logger logger = LoggerFactory.getLogger(Predict.class);
@Override
public String getName() {
return "predict";
}
@Override
public String getHelp() {
return "generate predictions for a user";
}
@Override
@SuppressWarnings({"rawtypes", "unchecked"})
public void execute(Namespace opts) throws IOException, RecommenderBuildException {
Context ctx = new Context(opts);
LenskitRecommenderEngine engine = ctx.loader.loadEngine();
long user = ctx.options.getLong("user");
List items = ctx.options.get("items");
try (LenskitRecommender rec = engine.createRecommender()) {
RatingPredictor pred = rec.getRatingPredictor();
ItemNameDAO names = rec.get(ItemNameDAO.class);
if (pred == null) {
logger.error("recommender has no rating predictor");
throw new UnsupportedOperationException("no rating predictor");
}
logger.info("predicting {} items", items.size());
Stopwatch timer = Stopwatch.createStarted();
Map preds = pred.predict(user, items);
System.out.format("predictions for user %d:%n", user);
for (Map.Entry e : preds.entrySet()) {
System.out.format(" %d", e.getKey());
if (names != null) {
System.out.format(" (%s)", names.getItemName(e.getKey()));
}
System.out.format(": %.3f", e.getValue());
System.out.println();
}
timer.stop();
logger.info("predicted for {} items in {}", items.size(), timer);
}
}
public void configureArguments(ArgumentParser parser) {
parser.description("Predicts a user's rating of some items.");
InputData.configureArguments(parser);
ScriptEnvironment.configureArguments(parser);
RecommenderLoader.configureArguments(parser);
parser.addArgument("user")
.type(Long.class)
.metavar("USER")
.help("predict for USER");
parser.addArgument("items")
.type(Long.class)
.metavar("ITEM")
.nargs("+")
.help("predict for ITEMs");
}
private static class Context {
private final Namespace options;
private final InputData input;
private final ScriptEnvironment environment;
private final RecommenderLoader loader;
public Context(Namespace opts) {
options = opts;
environment = new ScriptEnvironment(opts);
input = new InputData(environment, opts);
loader = new RecommenderLoader(input, environment, opts);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy