org.lenskit.LenskitRecommenderEngine Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lenskit-core Show documentation
Show all versions of lenskit-core Show documentation
The core of LensKit, providing basic implementations and algorithm support.
/*
* LensKit, an open source recommender systems toolkit.
* Copyright 2010-2014 LensKit Contributors. See CONTRIBUTORS.md.
* Work on LensKit has been funded by the National Science Foundation under
* grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package org.lenskit;
import com.google.common.base.Preconditions;
import org.grouplens.grapht.Component;
import org.grouplens.grapht.Dependency;
import org.grouplens.grapht.ResolutionException;
import org.grouplens.grapht.graph.DAGNode;
import org.grouplens.grapht.reflect.Qualifiers;
import org.grouplens.grapht.reflect.Satisfaction;
import org.grouplens.grapht.reflect.internal.InstanceSatisfaction;
import org.grouplens.grapht.solver.DependencySolver;
import org.grouplens.lenskit.util.io.CompressionMode;
import org.lenskit.api.RecommenderBuildException;
import org.lenskit.api.RecommenderEngine;
import org.lenskit.data.dao.DataAccessObject;
import org.lenskit.inject.GraphtUtils;
import org.lenskit.inject.RecommenderGraphBuilder;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import javax.annotation.WillClose;
import javax.annotation.WillNotClose;
import java.io.*;
/**
* LensKit implementation of a recommender engine. It uses containers set up by
* the {@link LenskitConfiguration} to set up actual recommenders, and can build
* multiple recommenders from the same model.
*
* If you just want to quick create a recommender for evaluation or testing,
* consider using {@link LenskitRecommender#build(LenskitConfiguration)}. For more
* control, use {@link LenskitRecommenderEngineBuilder}; to load a pre-built recommender
* engine, use {@link LenskitRecommenderEngineLoader}.
*
* @compat Public
* @see LenskitConfiguration
* @see LenskitRecommender
* @see LenskitRecommenderEngineBuilder
* @see LenskitRecommenderEngineLoader
*/
public final class LenskitRecommenderEngine implements RecommenderEngine {
private static final Logger logger = LoggerFactory.getLogger(LenskitRecommenderEngine.class);
private final DAGNode graph;
private final boolean instantiable;
LenskitRecommenderEngine(@Nonnull DAGNode graph,
boolean instantiable) {
Preconditions.checkNotNull(graph, "configuration graph");
this.graph = graph;
this.instantiable = instantiable;
}
/**
* Create a new recommender engine by reading a previously serialized engine from the
* given file. The new engine will be identical to the old except it will use the new
* DAOFactory. It is assumed that the file was created by using {@link #write(OutputStream)}.
* Classes will be loaded using a default class loader.
*
* @param file The file from which to load the engine.
* @return The loaded recommender engine.
* @throws IOException If there is an error reading from the file.
* @throws RecommenderConfigurationException
* If the configuration cannot be used.
*/
public static LenskitRecommenderEngine load(File file) throws IOException, RecommenderConfigurationException {
return newLoader().load(file);
}
/**
* Create a new recommender engine by reading a previously serialized engine from the
* given file. The new engine will be identical to the old except it will use the new
* DAOFactory. It is assumed that the file was created by using {@link #write(OutputStream)}.
*
* @param file The file from which to load the engine.
* @param loader The class loader to load from ({@code null} to use a default class loader).
* @return The loaded recommender engine.
* @throws IOException If there is an error reading from the file.
* @throws RecommenderConfigurationException
* If the configuration cannot be used.
* @deprecated Use {@link LenskitRecommenderEngineLoader} for sophisticated loading.
*/
@Deprecated
public static LenskitRecommenderEngine load(File file, ClassLoader loader) throws IOException, RecommenderConfigurationException {
return newLoader().setClassLoader(loader).load(file);
}
/**
* Create a new recommender engine by reading a previously serialized engine from the
* given input stream. The new engine will be identical to the old. It is assumed that the file
* was created by using {@link #write(OutputStream)}. Classes will be loaded using a default
* class loader.
*
* @param input The stream from which to load the engine.
* @return The loaded recommender engine.
* @throws IOException If there is an error reading from the file.
* @throws RecommenderConfigurationException
* If the configuration cannot be used.
*/
public static LenskitRecommenderEngine load(InputStream input) throws IOException, RecommenderConfigurationException {
return newLoader().load(input);
}
/**
* Write the state of this recommender engine to the given file so
* that it can be recreated later using another DAOFactory. This uses
* default object serialization so if the factory has a PicoContainer or
* session bindings containing non-serializable types, this will fail.
*
* @param file The file to write the rec engine to.
* @throws IOException if there is an error serializing the engine.
* @see #write(OutputStream)
*/
public void write(@Nonnull File file) throws IOException {
write(file, CompressionMode.NONE);
}
/**
* Write the state of this recommender engine to the given file so
* that it can be recreated later using another DAOFactory. This uses
* default object serialization so if the factory has a PicoContainer or
* session bindings containing non-serializable types, this will fail.
*
* @param file The file to write the rec engine to.
* @param compressed Whether to compress the output file.
* @throws IOException if there is an error serializing the engine.
* @see #write(OutputStream)
*/
public void write(@Nonnull File file, CompressionMode compressed) throws IOException {
try (OutputStream out = new FileOutputStream(file);
OutputStream zout = compressed.getEffectiveCompressionMode(file.getName()).wrapOutput(out)) {
write(zout);
}
}
/**
* Write the state of this recommender engine to the given stream so
* that it can be recreated later using another DAOFactory. This uses
* default object serialization so if the factory has session bindings
* containing non-serializable types, this will fail.
*
* @param stream The file to write the rec engine to.
* @throws IOException if there is an error serializing the engine.
* @see #load(InputStream)
*/
public void write(@Nonnull @WillClose OutputStream stream) throws IOException {
try (ObjectOutputStream out = new ObjectOutputStream(stream)) {
out.writeObject(graph);
}
}
/**
* Create a recommender.
* @return The recommender
* @deprecated Use {@link #createRecommender(DataAccessObject)}
*/
@Deprecated
@Override
public LenskitRecommender createRecommender() {
Preconditions.checkState(instantiable, "recommender engine does not have instantiable graph");
return new LenskitRecommender(graph);
}
/**
* Construct a recommender with some additional configuration. This can be used to do things
* like add data source configuration on a per-recommender, rather than per-engine, basis.
*
* This method is only used for special cases needing detailed access to the recommender.
*
* @param config The configuration to adjust the recommender.
* @return The constructed recommender.
* @throws RecommenderConfigurationException if there is an error configuring the recommender.
*/
public LenskitRecommender createRecommender(LenskitConfiguration config) throws RecommenderConfigurationException {
final DAGNode toBuild = createRecommenderGraph(config);
return new LenskitRecommender(toBuild);
}
/**
* Create a LensKit recommender.
* @param dao The data access object
* @return The constructed recommender.
*/
public LenskitRecommender createRecommender(@WillNotClose DataAccessObject dao) throws RecommenderBuildException {
LenskitConfiguration config = new LenskitConfiguration();
config.addComponent(dao);
return createRecommender(config);
}
public DAGNode createRecommenderGraph(LenskitConfiguration config) throws RecommenderConfigurationException {
Preconditions.checkNotNull(config, "extra configuration");
final DAGNode toBuild;
RecommenderGraphBuilder rgb = new RecommenderGraphBuilder();
rgb.addBindings(config.getBindings());
DependencySolver solver = rgb.buildDependencySolver();
try {
toBuild = solver.rewrite(graph);
} catch (ResolutionException ex) {
throw new RecommenderConfigurationException("error reconfiguring recommender", ex);
}
GraphtUtils.checkForPlaceholders(toBuild, logger);
return toBuild;
}
/**
* Query whether this engine is instantiable. Instantiable recommenders have all their
* placeholders removed and are ready to instantiate.
* @return {@code true} if the recommender is instantiable.
*/
public boolean isInstantiable() {
return instantiable;
}
/**
* Get the dependency graph of the recommender engine.
*
* @return The dependency graph.
*/
@Nonnull
public DAGNode getGraph() {
return graph;
}
/**
* Get the component of a particular type, if one is already instantiated. This is useful to extract pre-built
* models from serialized recommender engines, for example.
* @param type The required component type.
* @param The required component type.
* @return The component instance, or {@code null} if no instance can be retreived (either because no such
* component is configured, or it is not yet instantiated).
*/
@Nullable
public T getComponent(Class type) {
DAGNode node = GraphtUtils.findSatisfyingNode(graph, Qualifiers.matchDefault(), type);
if (node == null) {
return null;
}
Satisfaction sat = node.getLabel().getSatisfaction();
if (sat instanceof InstanceSatisfaction) {
return type.cast(((InstanceSatisfaction) sat).getInstance());
} else {
return null;
}
}
/**
* Build a LensKit recommender engine from a configuration. The resulting recommender is
* independent of any subsequent modifications to the configuration.
*
* @param config The configuration.
* @return The recommender engine.
*/
@SuppressWarnings("deprecation")
public static LenskitRecommenderEngine build(LenskitConfiguration config) throws RecommenderBuildException {
return newBuilder().addConfiguration(config).build();
}
/**
* Build a LensKit recommender engine from a configuration. The resulting recommender is
* independent of any subsequent modifications to the configuration.
*
* @param config The configuration.
* @param dao The data access object
* @return The recommender engine.
*/
public static LenskitRecommenderEngine build(LenskitConfiguration config, DataAccessObject dao) throws RecommenderBuildException {
return newBuilder().addConfiguration(config).build(dao);
}
/**
* Create a new recommender engine builder.
* @return A new recommender engine builder.
*/
public static LenskitRecommenderEngineBuilder newBuilder() {
return new LenskitRecommenderEngineBuilder();
}
/**
* Create a new recommender engine loader.
* @return A new recommender engine loader.
*/
public static LenskitRecommenderEngineLoader newLoader() {
return new LenskitRecommenderEngineLoader();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy