org.lenskit.basic.TopNItemBasedItemRecommender Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of lenskit-core Show documentation
Show all versions of lenskit-core Show documentation
The core of LensKit, providing basic implementations and algorithm support.
/*
* LensKit, an open source recommender systems toolkit.
* Copyright 2010-2014 LensKit Contributors. See CONTRIBUTORS.md.
* Work on LensKit has been funded by the National Science Foundation under
* grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package org.lenskit.basic;
import it.unimi.dsi.fastutil.longs.LongSet;
import org.lenskit.api.ItemBasedItemScorer;
import org.lenskit.api.ResultList;
import org.lenskit.api.ResultMap;
import org.lenskit.data.dao.ItemDAO;
import org.lenskit.results.Results;
import org.lenskit.util.collections.LongUtils;
import javax.annotation.Nullable;
import javax.inject.Inject;
import java.util.Set;
/**
* A global item recommender that recommends the top N items from a scorer.
*
* @author GroupLens Research
* @since 1.1
*/
public class TopNItemBasedItemRecommender extends AbstractItemBasedItemRecommender {
protected final ItemDAO itemDAO;
protected final ItemBasedItemScorer scorer;
@Inject
public TopNItemBasedItemRecommender(ItemDAO idao, ItemBasedItemScorer scorer) {
itemDAO = idao;
this.scorer = scorer;
}
@Override
public ResultList recommendRelatedItemsWithDetails(Set basket, int n, @Nullable Set candidates, @Nullable Set exclude) {
if (candidates == null) {
candidates = itemDAO.getItemIds();
}
if (exclude == null) {
exclude = getDefaultExcludes(LongUtils.asLongSet(basket));
}
if (!exclude.isEmpty()) {
candidates = LongUtils.setDifference(LongUtils.asLongSet(candidates),
LongUtils.asLongSet(exclude));
}
ResultMap scores = scorer.scoreRelatedItemsWithDetails(basket, candidates);
return recommend(n, scores);
}
/**
* Get the default exclude set for a item in the global recommendation.
* The base implementation returns the input set.
*
* @param items The items for which we are recommending.
* @return The set of items to exclude.
*/
protected LongSet getDefaultExcludes(LongSet items) {
return items;
}
/**
* Pick the top n items from a score vector.
*
* @param n The number of items to recommend.
* @param scores The scored item vector.
* @return The top n items from scores, in descending
* order of score.
*/
protected ResultList recommend(int n, ResultMap scores) {
if (scores.isEmpty()) {
Results.newResultList();
}
if (n < 0) {
n = scores.size();
}
return Results.newResultList(Results.scoreOrder().greatestOf(scores, n));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy