org.lenskit.eval.traintest.predict.PredictMetric Maven / Gradle / Ivy
/*
* LensKit, an open source recommender systems toolkit.
* Copyright 2010-2014 LensKit Contributors. See CONTRIBUTORS.md.
* Work on LensKit has been funded by the National Science Foundation under
* grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package org.lenskit.eval.traintest.predict;
import org.lenskit.api.ResultMap;
import org.lenskit.eval.traintest.TestUser;
import org.lenskit.eval.traintest.metrics.Metric;
import org.lenskit.eval.traintest.metrics.MetricResult;
import org.lenskit.eval.traintest.metrics.TypedMetricResult;
import javax.annotation.Nonnull;
import java.util.List;
/**
* Base class for metrics that measure predictions for users.
*
* @param The context type.
*/
public abstract class PredictMetric extends Metric {
/**
* Construct a new result metric.
* @param labels Column labels.
* @param aggLabels Aggregate column labels.
*/
protected PredictMetric(List labels, List aggLabels) {
super(labels, aggLabels);
}
/**
* Construct a new result metric.
* @param resType The result type for measuring results, or `null` for no measurement.
* @param aggType The result type for aggregate measurements, or `null` for no measurement.
*/
protected PredictMetric(Class extends TypedMetricResult> resType,
Class extends TypedMetricResult> aggType) {
super(TypedMetricResult.getColumns(resType),
TypedMetricResult.getColumns(aggType));
}
/**
* Measure a single result. The result may come from either prediction or recommendation.
* @param user The user's test data.
* @param predictions The predictions.
* @return A list of fields to add to the result's output.
*/
@Nonnull
public abstract MetricResult measureUser(TestUser user,
ResultMap predictions,
X context);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy