org.lenskit.slopeone.WeightedSlopeOneItemScorer Maven / Gradle / Ivy
/*
* LensKit, an open source recommender systems toolkit.
* Copyright 2010-2016 LensKit Contributors. See CONTRIBUTORS.md.
* Work on LensKit has been funded by the National Science Foundation under
* grants IIS 05-34939, 08-08692, 08-12148, and 10-17697.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
package org.lenskit.slopeone;
import it.unimi.dsi.fastutil.longs.Long2DoubleMap;
import it.unimi.dsi.fastutil.longs.LongIterator;
import it.unimi.dsi.fastutil.longs.LongIterators;
import org.grouplens.lenskit.vectors.ImmutableSparseVector;
import org.grouplens.lenskit.vectors.SparseVector;
import org.grouplens.lenskit.vectors.VectorEntry;
import org.lenskit.api.ItemScorer;
import org.lenskit.api.Result;
import org.lenskit.api.ResultMap;
import org.lenskit.data.ratings.PreferenceDomain;
import org.lenskit.data.ratings.RatingVectorPDAO;
import org.lenskit.results.Results;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import javax.inject.Inject;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* An {@link ItemScorer} that implements a weighted Slope One algorithm.
*/
public class WeightedSlopeOneItemScorer extends SlopeOneItemScorer {
@Inject
public WeightedSlopeOneItemScorer(RatingVectorPDAO dao, SlopeOneModel model,
@Nullable PreferenceDomain dom) {
super(dao, model, dom);
}
@Nonnull
@Override
public ResultMap scoreWithDetails(long user, @Nonnull Collection items) {
Long2DoubleMap ratings = dao.userRatingVector(user);
SparseVector userVector = ImmutableSparseVector.create(ratings);
List results = new ArrayList<>();
LongIterator iter = LongIterators.asLongIterator(items.iterator());
while (iter.hasNext()) {
final long predicteeItem = iter.nextLong();
if (!userVector.containsKey(predicteeItem)) {
double total = 0;
int nitems = 0;
for (VectorEntry e: userVector) {
long currentItem = e.getKey();
double currentDev = model.getDeviation(predicteeItem, currentItem);
if (!Double.isNaN(currentDev)) {
int weight = model.getCoratings(predicteeItem, currentItem);
total += (currentDev + e.getValue()) * weight;
nitems += weight;
}
}
if (nitems != 0) {
double predValue = total / nitems;
if (domain != null) {
predValue = domain.clampValue(predValue);
}
results.add(Results.create(predicteeItem, predValue));
}
}
}
return Results.newResultMap(results);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy