All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.libj.util.DualPivotQuicksortBoolean Maven / Gradle / Ivy

Go to download

Supplementary utilities for classes that belong to java.util, or are considered essential as to justify existence in java.util.

The newest version!
/* Copyright (c) 2023 LibJ
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * You should have received a copy of The MIT License (MIT) along with this
 * program. If not, see .
 */

package org.libj.util;

/**
 * Copied from {@link java.util.DualPivotQuicksort}.
 */
class DualPivotQuicksortBoolean {
  /**
   * The maximum number of runs in merge sort.
   */
  private static final int MAX_RUN_COUNT = 67;

  /**
   * The maximum length of run in merge sort.
   */
  private static final int MAX_RUN_LENGTH = 33;

  /**
   * If the length of an array to be sorted is less than this constant, Quicksort is used in preference to merge sort.
   */
  private static final int QUICKSORT_THRESHOLD = 286;

  /**
   * If the length of an array to be sorted is less than this constant, insertion sort is used in preference to Quicksort.
   */
  private static final int INSERTION_SORT_THRESHOLD = 47;

  /**
   * Checks that {@code fromIndex} and {@code toIndex} are in the range and throws an exception if they aren't.
   */
  private static void rangeCheck(int arrayLength, int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
      throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
      throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > arrayLength) {
      throw new ArrayIndexOutOfBoundsException(toIndex);
    }
  }

  /**
   * Sorts the specified range of the array into ascending order. The range to be sorted extends from the index {@code fromIndex},
   * inclusive, to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, the range to be sorted is empty.
   * 

* Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. * This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, * and is typically faster than traditional (one-pivot) Quicksort implementations. * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted * @param toIndex the index of the last element, exclusive, to be sorted * @throws IllegalArgumentException if {@code fromIndex > toIndex} * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or {@code toIndex > a.length} */ public static void sort(boolean[] a, int fromIndex, int toIndex) { rangeCheck(a.length, fromIndex, toIndex); DualPivotQuicksortBoolean.sort(a, fromIndex, toIndex - 1, null, 0, 0); } /** * Sorts the specified range of the array using the given workspace array slice if possible for merging * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted * @param work a workspace array (slice) * @param workBase origin of usable space in work array * @param workLen usable size of work array */ static void sort(boolean[] a, int left, int right, boolean[] work, int workBase, int workLen) { // Use Quicksort on small arrays if (right - left < QUICKSORT_THRESHOLD) { sort(a, left, right, true); return; } /* * Index run[i] is the start of i-th run (ascending or descending sequence). */ int[] run = new int[MAX_RUN_COUNT + 1]; int count = 0; run[0] = left; // Check if the array is nearly sorted for (int k = left; k < right; run[count] = k) { // [A] if (!a[k] && a[k + 1]) { // ascending while (++k <= right && (!a[k - 1] || a[k])); } else if (a[k] && !a[k + 1]) { // descending while (++k <= right && (a[k - 1] || !a[k])); for (int lo = run[count] - 1, hi = k; ++lo < --hi;) { // [A] boolean t = a[lo]; a[lo] = a[hi]; a[hi] = t; } } else { // equal for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k];) { // [A] if (--m == 0) { sort(a, left, right, true); return; } } } /* * The array is not highly structured, use Quicksort instead of merge sort. */ if (++count == MAX_RUN_COUNT) { sort(a, left, right, true); return; } } // Check special cases // Implementation note: variable "right" is increased by 1. if (run[count] == right++) { // The last run contains one element run[++count] = right; } else if (count == 1) { // The array is already sorted return; } // Determine alternation base for merge byte odd = 0; for (int n = 1; (n <<= 1) < count; odd ^= 1); // [X] // Use or create temporary array b for merging boolean[] b; // temp array; alternates with a int ao, bo; // array offsets from 'left' int blen = right - left; // space needed for b if (work == null || workLen < blen || workBase + blen > work.length) { work = new boolean[blen]; workBase = 0; } if (odd == 0) { System.arraycopy(a, left, work, workBase, blen); b = a; bo = 0; a = work; ao = workBase - left; } else { b = work; ao = 0; bo = workBase - left; } // Merging for (int last; count > 1; count = last) { // [N] for (int k = (last = 0) + 2; k <= count; k += 2) { // [A] int hi = run[k], mi = run[k - 1]; for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { // [X] if (q >= hi || p < mi && (!a[p + ao] || a[q + ao])) { b[i + bo] = a[p++ + ao]; } else { b[i + bo] = a[q++ + ao]; } } run[++last] = hi; } if ((count & 1) != 0) { for (int i = right, lo = run[count - 1]; --i >= lo; b[i + bo] = a[i + ao]); // [A] run[++last] = right; } boolean[] t = a; a = b; b = t; int o = ao; ao = bo; bo = o; } } /** * Sorts the specified range of the array by Dual-Pivot Quicksort. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted * @param leftmost indicates if this part is the leftmost in the range */ private static void sort(boolean[] a, int left, int right, boolean leftmost) { int length = right - left + 1; // Use insertion sort on tiny arrays if (length < INSERTION_SORT_THRESHOLD) { if (leftmost) { /* * Traditional (without sentinel) insertion sort, optimized for server VM, is used in case of the leftmost part. */ for (int i = left, j = i; i < right; j = ++i) { // [A] boolean ai = a[i + 1]; while (!ai && a[j]) { a[j + 1] = a[j]; if (j-- == left) { break; } } a[j + 1] = ai; } } else { /* * Skip the booleanest ascending sequence. */ do { if (left >= right) { return; } } while (a[++left] || !a[left - 1]); /* * Every element from adjoining part plays the role of sentinel, therefore this allows us to avoid the left range check on each * iteration. Moreover, we use the more optimized algorithm, so called pair insertion sort, which is faster (in the context of * Quicksort) than traditional implementation of insertion sort. */ for (int k = left; ++left <= right; k = ++left) { // [A] boolean a1 = a[k], a2 = a[left]; if (!a1 && a2) { a2 = a1; a1 = a[left]; } while (!a1 && a[--k]) { a[k + 2] = a[k]; } a[++k + 1] = a1; while (!a2 && a[--k]) { a[k + 1] = a[k]; } a[k + 1] = a2; } boolean last = a[right]; while (!last && a[--right]) { a[right + 1] = a[right]; } a[right + 1] = last; } return; } // Inexpensive approximation of length / 7 int seventh = (length >> 3) + (length >> 6) + 1; /* * Sort five evenly spaced elements around (and including) the center element in the range. These elements will be used for pivot * selection as described below. The choice for spacing these elements was empirically determined to work well on a wide variety of * inputs. */ int e3 = (left + right) >>> 1; // The midpoint int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh; // Sort these elements using insertion sort if (!a[e2] && a[e1]) { boolean t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (!a[e3] && a[e2]) { boolean t = a[e3]; a[e3] = a[e2]; a[e2] = t; if (!t && a[e1]) { a[e2] = a[e1]; a[e1] = t; } } if (!a[e4] && a[e3]) { boolean t = a[e4]; a[e4] = a[e3]; a[e3] = t; if (!t && a[e2]) { a[e3] = a[e2]; a[e2] = t; if (!t && a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } if (!a[e5] && a[e4]) { boolean t = a[e5]; a[e5] = a[e4]; a[e4] = t; if (!t && a[e3]) { a[e4] = a[e3]; a[e3] = t; if (!t && a[e2]) { a[e3] = a[e2]; a[e2] = t; if (!t && a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } } // Pointers int less = left; // The index of the first element of center part int great = right; // The index before the first element of right part if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* * Use the second and fourth of the five sorted elements as pivots. These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. */ boolean pivot1 = a[e2]; boolean pivot2 = a[e4]; /* * The first and the last elements to be sorted are moved to the locations formerly occupied by the pivots. When partitioning is * complete, the pivots are swapped back into their final positions, and excluded from subsequent sorting. */ a[e2] = a[left]; a[e4] = a[right]; /* * Skip elements, which are less or greater than pivot values. */ while (!a[++less] && pivot1); while (a[--great] && !pivot2); /* * Partitioning: left part center part right part +--------------------------------------------------------------+ | < pivot1 | * pivot1 <= && <= pivot2 | ? | > pivot2 | +--------------------------------------------------------------+ ^ ^ ^ | | | less k great * Invariants: all in (left, less) < pivot1 pivot1 <= all in [less, k) <= pivot2 all in (great, right) > pivot2 Pointer k is the * first index of ?-part. */ outer: for (int k = less - 1; ++k <= great;) { // [A] boolean ak = a[k]; if (!ak && pivot1) { // Move a[k] to left part a[k] = a[less]; /* * Here and below we use "a[i] = b; i++;" instead of "a[i++] = b;" due to performance issue. */ a[less] = ak; ++less; } else if (ak && !pivot2) { // Move a[k] to right part while (a[great] && !pivot2) { if (great-- == k) { break outer; } } if (!a[great] && pivot1) { // a[great] <= pivot2 a[k] = a[less]; a[less] = a[great]; ++less; } else { // pivot1 <= a[great] <= pivot2 a[k] = a[great]; } /* * Here and below we use "a[i] = b; i--;" instead of "a[i--] = b;" due to performance issue. */ a[great] = ak; --great; } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivots sort(a, left, less - 2, leftmost); sort(a, great + 2, right, false); /* * If center part is too large (comprises > 4/7 of the array), swap internal pivot values to ends. */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (a[less] == pivot1) { ++less; } while (a[great] == pivot2) { --great; } /* * Partitioning: left part center part right part +----------------------------------------------------------+ | == pivot1 | pivot1 * < && < pivot2 | ? | == pivot2 | +----------------------------------------------------------+ ^ ^ ^ | | | less k great Invariants: * all in (*, less) == pivot1 pivot1 < all in [less, k) < pivot2 all in (great, *) == pivot2 Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great;) { // [A] boolean ak = a[k]; if (ak == pivot1) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else if (ak == pivot2) { // Move a[k] to right part while (a[great] == pivot2) { if (great-- == k) { break outer; } } if (a[great] == pivot1) { // a[great] < pivot2 a[k] = a[less]; /* * Even though a[great] equals to pivot1, the assignment a[less] = pivot1 may be incorrect, if a[great] and pivot1 are * floating-point zeros of different signs. Therefore in float and double sorting methods we have to use more accurate assignment * a[less] = a[great]. */ a[less] = pivot1; ++less; } else { // pivot1 < a[great] < pivot2 a[k] = a[great]; } a[great] = ak; --great; } } } // Sort center part recursively sort(a, less, great, false); } else { // Partitioning with one pivot /* * Use the third of the five sorted elements as pivot. This value is inexpensive approximation of the median. */ boolean pivot = a[e3]; /* * Partitioning degenerates to the traditional 3-way (or "Dutch National Flag") schema: left part center part right part * +-------------------------------------------------+ | < pivot | == pivot | ? | > pivot | * +-------------------------------------------------+ ^ ^ ^ | | | less k great Invariants: all in (left, less) < pivot all in * [less, k) == pivot all in (great, right) > pivot Pointer k is the first index of ?-part. */ for (int k = less; k <= great; ++k) { // [A] if (a[k] == pivot) { continue; } boolean ak = a[k]; if (!ak && pivot) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else { // a[k] > pivot - Move a[k] to right part while (a[great] && !pivot) { --great; } if (!a[great] && pivot) { // a[great] <= pivot a[k] = a[less]; a[less] = a[great]; ++less; } else { // a[great] == pivot /* * Even though a[great] equals to pivot, the assignment a[k] = pivot may be incorrect, if a[great] and pivot are floating-point * zeros of different signs. Therefore in float and double sorting methods we have to use more accurate assignment a[k] = a[great]. */ a[k] = pivot; } a[great] = ak; --great; } } /* * Sort left and right parts recursively. All elements from center part are equal and, therefore, already sorted. */ sort(a, left, less - 1, leftmost); sort(a, great + 1, right, false); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy