All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.logicng.solvers.functions.OptimizationFunction Maven / Gradle / Ivy

///////////////////////////////////////////////////////////////////////////
//                   __                _      _   ________               //
//                  / /   ____  ____ _(_)____/ | / / ____/               //
//                 / /   / __ \/ __ `/ / ___/  |/ / / __                 //
//                / /___/ /_/ / /_/ / / /__/ /|  / /_/ /                 //
//               /_____/\____/\__, /_/\___/_/ |_/\____/                  //
//                           /____/                                      //
//                                                                       //
//               The Next Generation Logic Library                       //
//                                                                       //
///////////////////////////////////////////////////////////////////////////
//                                                                       //
//  Copyright 2015-20xx Christoph Zengler                                //
//                                                                       //
//  Licensed under the Apache License, Version 2.0 (the "License");      //
//  you may not use this file except in compliance with the License.     //
//  You may obtain a copy of the License at                              //
//                                                                       //
//  http://www.apache.org/licenses/LICENSE-2.0                           //
//                                                                       //
//  Unless required by applicable law or agreed to in writing, software  //
//  distributed under the License is distributed on an "AS IS" BASIS,    //
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or      //
//  implied.  See the License for the specific language governing        //
//  permissions and limitations under the License.                       //
//                                                                       //
///////////////////////////////////////////////////////////////////////////

package org.logicng.solvers.functions;

import static org.logicng.handlers.Handler.aborted;
import static org.logicng.handlers.Handler.start;
import static org.logicng.handlers.OptimizationHandler.satHandler;

import org.logicng.cardinalityconstraints.CCIncrementalData;
import org.logicng.collections.LNGBooleanVector;
import org.logicng.collections.LNGIntVector;
import org.logicng.datastructures.Assignment;
import org.logicng.datastructures.Tristate;
import org.logicng.formulas.CType;
import org.logicng.formulas.CardinalityConstraint;
import org.logicng.formulas.Formula;
import org.logicng.formulas.FormulaFactory;
import org.logicng.formulas.Literal;
import org.logicng.formulas.Variable;
import org.logicng.handlers.OptimizationHandler;
import org.logicng.solvers.MiniSat;
import org.logicng.solvers.SolverState;

import java.util.Arrays;
import java.util.Collection;
import java.util.Map;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeMap;
import java.util.TreeSet;
import java.util.function.Consumer;

/**
 * A solver function for computing a model for the formula on the solver
 * which has a global minimum or maximum of satisfied literals. If the formula
 * is UNSAT or the optimization handler aborted the computation, {@code null}
 * will be returned.
 * 

* Optimization functions are instantiated via their builder {@link #builder()}. * @version 2.1.0 * @since 2.0.0 */ public final class OptimizationFunction implements SolverFunction { private static final String SEL_PREFIX = "@SEL_OPT_"; private final Collection literals; private final SortedSet resultModelVariables; private final boolean maximize; private final OptimizationHandler handler; private OptimizationFunction(final Collection literals, final Collection additionalVariables, final boolean maximize, final OptimizationHandler handler) { this.literals = literals; this.resultModelVariables = new TreeSet<>(additionalVariables); for (final Literal lit : literals) { this.resultModelVariables.add(lit.variable()); } this.maximize = maximize; this.handler = handler; } /** * Returns the builder for this function. * @return the builder */ public static Builder builder() { return new OptimizationFunction.Builder(); } /** * Returns an optimization function which maximizes the given set of literals. * @param literals the literals to maximize * @return the solver function */ public static OptimizationFunction maximize(final Collection literals) { return new Builder().literals(literals).maximize().build(); } /** * Returns an optimization function which minimizes the given set of literals. * @param literals the literals to minimize * @return the solver function */ public static OptimizationFunction minimize(final Collection literals) { return new Builder().literals(literals).minimize().build(); } @Override public Assignment apply(final MiniSat solver, final Consumer resultSetter) { SolverState initialState = null; if (solver.canSaveLoadState()) { initialState = solver.saveState(); } final Assignment model = maximize(solver); if (solver.canSaveLoadState()) { solver.loadState(initialState); } return model; } private Assignment maximize(final MiniSat solver) { start(this.handler); final FormulaFactory f = solver.factory(); LNGBooleanVector internalModel; final Map selectorMap = new TreeMap<>(); for (final Literal lit : this.literals) { final Variable selVar = f.variable(SEL_PREFIX + selectorMap.size()); selectorMap.put(selVar, lit); } final Set selectors = selectorMap.keySet(); if (this.maximize) { selectorMap.forEach((selVar, lit) -> solver.add(f.or(selVar.negate(), lit))); selectorMap.forEach((selVar, lit) -> solver.add(f.or(lit.negate(), selVar))); } else { selectorMap.forEach((selVar, lit) -> solver.add(f.or(selVar.negate(), lit.negate()))); selectorMap.forEach((selVar, lit) -> solver.add(f.or(lit, selVar))); } Tristate sat = solver.sat(satHandler(this.handler)); if (sat != Tristate.TRUE || aborted(this.handler)) { return null; } internalModel = solver.underlyingSolver().model(); Assignment currentModel = solver.model(selectors); int currentBound = currentModel.positiveVariables().size(); if (currentBound == 0) { solver.add(f.cc(CType.GE, 1, selectors)); sat = solver.sat(satHandler(this.handler)); if (aborted(this.handler)) { return null; } else if (sat == Tristate.FALSE) { return mkResultModel(solver, internalModel); } else { internalModel = solver.underlyingSolver().model(); currentModel = solver.model(selectors); currentBound = currentModel.positiveVariables().size(); } } else if (currentBound == selectors.size()) { return mkResultModel(solver, internalModel); } final Formula cc = f.cc(CType.GE, currentBound + 1, selectors); assert cc instanceof CardinalityConstraint; final CCIncrementalData incrementalData = solver.addIncrementalCC((CardinalityConstraint) cc); sat = solver.sat(satHandler(this.handler)); if (aborted(this.handler)) { return null; } while (sat == Tristate.TRUE) { final LNGBooleanVector modelCopy = new LNGBooleanVector(solver.underlyingSolver().model()); if (this.handler != null && !this.handler.foundBetterBound(() -> mkResultModel(solver, modelCopy))) { return null; } internalModel = modelCopy; currentModel = solver.model(selectors); currentBound = currentModel.positiveVariables().size(); if (currentBound == selectors.size()) { return mkResultModel(solver, internalModel); } incrementalData.newLowerBoundForSolver(currentBound + 1); sat = solver.sat(satHandler(this.handler)); if (aborted(this.handler)) { return null; } } return mkResultModel(solver, internalModel); } private Assignment mkResultModel(final MiniSat solver, final LNGBooleanVector internalModel) { final LNGIntVector relevantIndices = new LNGIntVector(this.resultModelVariables.size()); for (final Variable var : this.resultModelVariables) { relevantIndices.push(solver.underlyingSolver().idxForName(var.name())); } return solver.createAssignment(internalModel, relevantIndices); } /** * The builder for an optimization function. */ public static class Builder { private Collection literals; private Collection additionalVariables = new TreeSet<>(); private boolean maximize = true; private OptimizationHandler handler = null; private Builder() { // Initialize only via factory } /** * Sets the set of literals that should be optimized s.t. the number of satisfied literals is maximized or minimized. * @param literals the set of literals * @return the current builder */ public Builder literals(final Collection literals) { this.literals = literals; return this; } /** * Sets the set of literals that should be optimized s.t. the number of satisfied literals is maximized or minimized. * @param literals the set of literals * @return the current builder */ public Builder literals(final Literal... literals) { this.literals = Arrays.asList(literals); return this; } /** * Sets an additional set of variables which should occur in the resulting model. * @param variables the additional variables for the resulting model * @return the current builder */ public Builder additionalVariables(final Collection variables) { this.additionalVariables = variables; return this; } /** * Sets an additional set of variables which should occur in every model. * @param variables the additional variables for each model * @return the current builder */ public Builder additionalVariables(final Variable... variables) { this.additionalVariables = Arrays.asList(variables); return this; } /** * Sets the optimization goal to minimize. * @return the current builder */ public Builder minimize() { this.maximize = false; return this; } /** * Sets the optimization goal to maximize. * @return the current builder */ public Builder maximize() { this.maximize = true; return this; } /** * Sets the handler for the optimization. * @param handler the handler * @return the current builder */ public Builder handler(final OptimizationHandler handler) { this.handler = handler; return this; } /** * Builds the optimization function with the current builder's configuration. * @return the optimization function */ public OptimizationFunction build() { return new OptimizationFunction(this.literals, this.additionalVariables, this.maximize, this.handler); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy