All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.logicng.transformations.qmc.QuineMcCluskeyAlgorithm Maven / Gradle / Ivy

///////////////////////////////////////////////////////////////////////////
//                   __                _      _   ________               //
//                  / /   ____  ____ _(_)____/ | / / ____/               //
//                 / /   / __ \/ __ `/ / ___/  |/ / / __                 //
//                / /___/ /_/ / /_/ / / /__/ /|  / /_/ /                 //
//               /_____/\____/\__, /_/\___/_/ |_/\____/                  //
//                           /____/                                      //
//                                                                       //
//               The Next Generation Logic Library                       //
//                                                                       //
///////////////////////////////////////////////////////////////////////////
//                                                                       //
//  Copyright 2015-20xx Christoph Zengler                                //
//                                                                       //
//  Licensed under the Apache License, Version 2.0 (the "License");      //
//  you may not use this file except in compliance with the License.     //
//  You may obtain a copy of the License at                              //
//                                                                       //
//  http://www.apache.org/licenses/LICENSE-2.0                           //
//                                                                       //
//  Unless required by applicable law or agreed to in writing, software  //
//  distributed under the License is distributed on an "AS IS" BASIS,    //
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or      //
//  implied.  See the License for the specific language governing        //
//  permissions and limitations under the License.                       //
//                                                                       //
///////////////////////////////////////////////////////////////////////////

package org.logicng.transformations.qmc;

import org.logicng.cardinalityconstraints.CCIncrementalData;
import org.logicng.datastructures.Assignment;
import org.logicng.datastructures.Tristate;
import org.logicng.formulas.CType;
import org.logicng.formulas.CardinalityConstraint;
import org.logicng.formulas.Formula;
import org.logicng.formulas.FormulaFactory;
import org.logicng.formulas.Literal;
import org.logicng.formulas.Variable;
import org.logicng.solvers.MiniSat;
import org.logicng.solvers.SATSolver;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.SortedMap;
import java.util.TreeMap;

/**
 * An implementation of the Quine-McCluskey algorithm for minimizing canonical DNFs.  This implementation is fairly
 * efficient but keep in mind that Quine-McCluskey can be a very expensive procedure for large canonical DNFs.  So we
 * would not recommend using this implementation for super large DNFs.
 * @version 2.0.0
 * @since 1.4.0
 */
public class QuineMcCluskeyAlgorithm {

    /**
     * Computes a minimized DNF for a given formula projected to a given set of variables.  First a projected canonical
     * DNF of the formula is computed for the given variables.  Then for this canonical DNF the Quine-McCluskey algorithm
     * is computed.
     * @param formula           the formula
     * @param relevantVariables the relevant formulas for the projected canonical DNF
     * @return the minimized DNF due to Qune-McCluskey
     */
    public static Formula compute(final Formula formula, final Collection relevantVariables) {
        final FormulaFactory f = formula.factory();
        final SATSolver solver = MiniSat.miniSat(f);
        solver.add(formula);
        final List models = relevantVariables == null ? solver.enumerateAllModels(formula.variables()) : solver.enumerateAllModels(relevantVariables);
        return compute(models, f);
    }

    /**
     * Computes a minimized DNF for a given formula.  First the canonical DNF of the formula is computed.  Then for
     * this canonical DNF the Quine-McCluskey algorithm is computed.
     * @param formula the formula
     * @return the minimized DNF due to Quine-McCluskey
     */
    public static Formula compute(final Formula formula) {
        return compute(formula, formula.variables());
    }

    /**
     * Computes a minimized DNF for a given set of models.  These models have to represent a canonical DNF of a formula
     * as computed e.g. by the projected model enumeration of a SAT solver {@link SATSolver#enumerateAllModels(Variable[])}
     * or by the transformation {@link org.logicng.transformations.dnf.CanonicalDNFEnumeration}.
     * @param models the models of the formula
     * @param f      the formula factory
     * @return the minimized DNF due to Quine-McCluskey
     */
    public static Formula compute(final List models, final FormulaFactory f) {
        if (models.isEmpty()) {
            return f.falsum();
        }
        if (models.size() == 1) {
            return models.get(0).formula(f);
        }
        final List varOrder = new ArrayList<>(models.get(0).positiveVariables());
        varOrder.addAll(models.get(0).negativeVariables());
        Collections.sort(varOrder);
        final List terms = transformModels2Terms(models, varOrder, f);
        final LinkedHashSet primeImplicants = computePrimeImplicants(terms);
        final TermTable primeTermTable = new TermTable(primeImplicants);
        primeTermTable.simplifyTableByDominance();
        final List chosenTerms = chooseSatBased(primeTermTable, f);
        return computeFormula(chosenTerms, varOrder);
    }

    /**
     * Transforms a given list of models to a term list as used in the QMC implementation.
     * @param models   the models
     * @param varOrder the variable ordering
     * @param f        the formula factory
     * @return the list of terms
     */
    static List transformModels2Terms(final List models, final List varOrder,
                                            final FormulaFactory f) {
        final List terms = new ArrayList<>(models.size());
        for (final Assignment model : models) {
            final List minterm = new ArrayList<>();
            for (final Variable variable : varOrder) {
                minterm.add(model.evaluateLit(variable) ? variable : variable.negate());
            }
            terms.add(convertToTerm(minterm, f));
        }
        return terms;
    }

    /**
     * Computes the list of all prime implicants for a given set of terms.
     * @param terms the terms
     * @return all prime implicants for the given terms
     */
    static LinkedHashSet computePrimeImplicants(final List terms) {
        SortedMap> termsInClasses = generateInitialTermClasses(terms);
        SortedMap> newTermsInClasses = combineInTermClasses(termsInClasses);
        final LinkedHashSet primeImplicants = getUnusedTerms(termsInClasses);
        while (!newTermsInClasses.isEmpty()) {
            termsInClasses = newTermsInClasses;
            newTermsInClasses = combineInTermClasses(termsInClasses);
            primeImplicants.addAll(getUnusedTerms(termsInClasses));
        }
        return primeImplicants;
    }

    /**
     * Computes the combination of all terms in two adjacent classes.
     * @param termsInClasses the terms sorted in term classes
     * @return the combined terms
     */
    static SortedMap> combineInTermClasses(final SortedMap> termsInClasses) {
        final SortedMap> newTermsInClasses = new TreeMap<>();
        for (int i = 0; i < termsInClasses.lastKey(); i++) {
            final LinkedHashSet thisClass = termsInClasses.get(i);
            final LinkedHashSet otherClass = termsInClasses.get(i + 1);
            if (thisClass != null && otherClass != null) {
                for (final Term thisTerm : thisClass) {
                    for (final Term otherTerm : otherClass) {
                        final Term combined = thisTerm.combine(otherTerm);
                        if (combined != null) {
                            thisTerm.setUsed(true);
                            otherTerm.setUsed(true);
                            newTermsInClasses.computeIfAbsent(combined.termClass(), k -> new LinkedHashSet<>()).add(combined);
                        }
                    }
                }
            }
        }
        return newTermsInClasses;
    }

    /**
     * Computes the unused terms in set of terms.  These terms are the prime implicants in the QMC.
     * @param termsInClasses the terms sorted in term classes
     * @return the unused terms in the given set of terms
     */
    static LinkedHashSet getUnusedTerms(final SortedMap> termsInClasses) {
        final LinkedHashSet unusedTerms = new LinkedHashSet<>();
        for (final Map.Entry> entry : termsInClasses.entrySet()) {
            for (final Term term : entry.getValue()) {
                if (!term.isUsed()) {
                    unusedTerms.add(term);
                }
            }
        }
        return unusedTerms;
    }

    /**
     * Computes and returns the initial term classes for a given list of terms.
     * @param terms the terms
     * @return the terms sorted in term classes
     */
    static SortedMap> generateInitialTermClasses(final List terms) {
        final SortedMap> termsInClasses = new TreeMap<>();
        for (final Term term : terms) {
            termsInClasses.computeIfAbsent(term.termClass(), k -> new LinkedHashSet<>()).add(term);
        }
        return termsInClasses;
    }

    /**
     * Computes the formula for a given list of chosen terms and a variable order.
     * @param chosenTerms the chosen terms
     * @param varOrder    the variable order
     * @return the formula for this term list and variable ordering
     */
    static Formula computeFormula(final List chosenTerms, final List varOrder) {
        final FormulaFactory f = varOrder.get(0).factory();
        final List operands = new ArrayList<>(chosenTerms.size());
        for (final Term term : chosenTerms) {
            operands.add(term.translateToFormula(varOrder));
        }
        return f.or(operands);
    }

    /**
     * Converts a given minterm to a QMC internal term.
     * @param minterm the minterm as list of literals
     * @param f       the formula factory
     * @return the term for this minterm
     */
    static Term convertToTerm(final List minterm, final FormulaFactory f) {
        final Tristate[] bits = new Tristate[minterm.size()];
        for (int i = 0; i < minterm.size(); i++) {
            bits[i] = Tristate.fromBool(minterm.get(i).phase());
        }
        return new Term(bits, Collections.singletonList(f.and(minterm)));
    }

    /**
     * Choose a minimal set of prime implicants from the final prime implicant table of QMC.  This implementation uses
     * a MaxSAT formulation for this variant of the SET COVER problem which should be more efficient than e.g. Petrick's
     * method for all cases in which this Quine-McCluskey implementation yields a result in reasonable time.
     * @param table the final prime term table
     * @param f     the formula factory
     * @return the list of chosen prime implicants which are minimal wrt. to their number
     */
    static List chooseSatBased(final TermTable table, final FormulaFactory f) {
        final LinkedHashMap var2Term = new LinkedHashMap<>();
        final LinkedHashMap formula2VarMapping = new LinkedHashMap<>();
        final SATSolver satSolver = initializeSolver(table, f, var2Term, formula2VarMapping);
        if (satSolver.sat() == Tristate.FALSE) {
            throw new IllegalStateException("Solver must be satisfiable after adding the initial formula.");
        }
        return minimize(satSolver, var2Term, f);
    }

    /**
     * Initializes the SAT solver for the SET COVER problem formulation.
     * @param table              the prime implicant table
     * @param f                  the formula factory
     * @param var2Term           a mapping from selector variable to prime implicant
     * @param formula2VarMapping a mapping form minterm to variable
     * @return the initialized SAT solver
     */
    static SATSolver initializeSolver(final TermTable table, final FormulaFactory f, final LinkedHashMap var2Term, final LinkedHashMap formula2VarMapping) {
        final LinkedHashMap> minterm2Variants = new LinkedHashMap<>();
        int count = 0;
        String prefix = "@MINTERM_SEL_";
        for (final Formula formula : table.columnHeaders()) {
            final Variable selector = f.variable(prefix + count++);
            formula2VarMapping.put(formula, selector);
            minterm2Variants.put(selector, new ArrayList<>());
        }
        count = 0;
        prefix = "@TERM_SEL_";

        final SATSolver solver = MiniSat.miniSat(f);
        for (final Term term : table.lineHeaders()) {
            final Variable termSelector = f.variable(prefix + count);
            var2Term.put(termSelector, term);
            final List mintermSelectors = new ArrayList<>();
            for (final Formula formula : term.minterms()) {
                final Variable mintermSelector = formula2VarMapping.get(formula);
                if (mintermSelector != null) {
                    final Variable selectorVariant = f.variable(mintermSelector.name() + "_" + count);
                    minterm2Variants.get(mintermSelector).add(selectorVariant);
                    mintermSelectors.add(selectorVariant);
                }
            }
            final List operands = new ArrayList<>();
            for (int i = 0; i < mintermSelectors.size(); i++) {
                final Variable mintermSelector = mintermSelectors.get(i);
                solver.add(f.clause(termSelector.negate(), mintermSelector));
                operands.add(mintermSelector.negate());
                for (int j = i + 1; j < mintermSelectors.size(); j++) {
                    final Variable mintermSelector2 = mintermSelectors.get(j);
                    solver.add(f.or(mintermSelector.negate(), mintermSelector2));
                    solver.add(f.or(mintermSelector2.negate(), mintermSelector));
                }
            }
            operands.add(termSelector);
            solver.add(f.clause(operands));
            count++;
        }
        for (final List variables : minterm2Variants.values()) {
            solver.add(f.clause(variables));
        }
        return solver;
    }

    /**
     * Performs the minimization via incremental cardinality constraints.
     * @param satSolver the SAT solver
     * @param var2Term  a mapping from selector variable to prime implicant
     * @param f         the formula factory
     * @return a minimal set of prime implicants to cover all minterms
     */
    static List minimize(final SATSolver satSolver, final LinkedHashMap var2Term, final FormulaFactory f) {
        final Assignment initialModel = satSolver.model();
        List currentTermVars = computeCurrentTermVars(initialModel, var2Term.keySet());
        if (currentTermVars.size() == 2) {
            satSolver.add(f.amo(var2Term.keySet()));
            if (satSolver.sat() == Tristate.TRUE) {
                currentTermVars = computeCurrentTermVars(satSolver.model(), var2Term.keySet());
            }
        } else {
            final Formula cc = f.cc(CType.LE, currentTermVars.size() - 1, var2Term.keySet());
            assert cc instanceof CardinalityConstraint;
            final CCIncrementalData incData = satSolver.addIncrementalCC((CardinalityConstraint) cc);
            while (satSolver.sat() == Tristate.TRUE) {
                currentTermVars = computeCurrentTermVars(satSolver.model(), var2Term.keySet());
                incData.newUpperBoundForSolver(currentTermVars.size() - 1);
            }
        }
        return computeTerms(currentTermVars, var2Term);
    }

    /**
     * Computes the terms from a given list of selector variables
     * @param currentTermVars the list of selector variables
     * @param var2Term        a mapping from selector variable to prime implicant
     * @return the terms for the given list
     */
    static List computeTerms(final List currentTermVars, final LinkedHashMap var2Term) {
        final List terms = new ArrayList<>(currentTermVars.size());
        for (final Variable currentTermVar : currentTermVars) {
            terms.add(var2Term.get(currentTermVar));
        }
        return terms;
    }

    /**
     * Computes the prime implicant selector variables for a given model.
     * @param model the model
     * @param vars  the list of selector variables
     * @return the selector variables in the given model
     */
    static List computeCurrentTermVars(final Assignment model, final Collection vars) {
        final List result = new ArrayList<>();
        for (final Variable var : vars) {
            if (model.evaluateLit(var)) {
                result.add(var);
            }
        }
        return result;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy