org.maltparser.ml.lib.MaltLiblinearModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of maltparser Show documentation
Show all versions of maltparser Show documentation
MaltParser is a system for data-driven dependency parsing, which can be used to induce a parsing model from treebank data and to parse new data using an induced model.
The newest version!
package org.maltparser.ml.lib;
import java.io.BufferedReader;
import java.io.EOFException;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Reader;
import java.io.Serializable;
import java.nio.charset.Charset;
import java.util.Arrays;
import java.util.regex.Pattern;
import org.maltparser.core.helper.Util;
import de.bwaldvogel.liblinear.SolverType;
/**
* This class borrows code from liblinear.Model.java of the Java implementation of the liblinear package.
* MaltLiblinearModel stores the model obtained from the training procedure. In addition to the original code the model is more integrated to
* MaltParser. Instead of moving features from MaltParser's internal data structures to liblinear's data structure it uses MaltParser's data
* structure directly on the model.
*
* @author Johan Hall
*
*/
public class MaltLiblinearModel implements Serializable, MaltLibModel {
private static final long serialVersionUID = 7526471155622776147L;
private static final Charset FILE_CHARSET = Charset.forName("ISO-8859-1");
private double bias;
/** label of each class */
private int[] labels;
private int nr_class;
private int nr_feature;
private SolverType solverType;
/** feature weight array */
private double[][] w;
public MaltLiblinearModel(int[] labels, int nr_class, int nr_feature, double[][] w, SolverType solverType) {
this.labels = labels;
this.nr_class = nr_class;
this.nr_feature = nr_feature;
this.w = w;
this.solverType = solverType;
}
public MaltLiblinearModel(Reader inputReader) throws IOException {
loadModel(inputReader);
}
public MaltLiblinearModel(File modelFile) throws IOException {
BufferedReader inputReader = new BufferedReader(new InputStreamReader(new FileInputStream(modelFile), FILE_CHARSET));
loadModel(inputReader);
}
/**
* @return number of classes
*/
public int getNrClass() {
return nr_class;
}
/**
* @return number of features
*/
public int getNrFeature() {
return nr_feature;
}
public int[] getLabels() {
return Util.copyOf(labels, nr_class);
}
/**
* The nr_feature*nr_class array w gives feature weights. We use one
* against the rest for multi-class classification, so each feature
* index corresponds to nr_class weight values. Weights are
* organized in the following way
*
*
* +------------------+------------------+------------+
* | nr_class weights | nr_class weights | ...
* | for 1st feature | for 2nd feature |
* +------------------+------------------+------------+
*
*
* If bias >= 0, x becomes [x; bias]. The number of features is
* increased by one, so w is a (nr_feature+1)*nr_class array. The
* value of bias is stored in the variable bias.
* @see #getBias()
* @return a copy of the feature weight array as described
*/
// public double[] getFeatureWeights() {
// return Util.copyOf(w, w.length);
// }
/**
* @return true for logistic regression solvers
*/
public boolean isProbabilityModel() {
return (solverType == SolverType.L2R_LR || solverType == SolverType.L2R_LR_DUAL || solverType == SolverType.L1R_LR);
}
public double getBias() {
return bias;
}
public int[] predict(MaltFeatureNode[] x) {
final double[] dec_values = new double[nr_class];
final int n = (bias >= 0)?nr_feature + 1:nr_feature;
final int xlen = x.length;
for (int i=0; i < xlen; i++) {
if (x[i].index <= n) {
final int t = (x[i].index - 1);
if (w[t] != null) {
for (int j = 0; j < w[t].length; j++) {
dec_values[j] += w[t][j] * x[i].value;
}
}
}
}
double tmpDec;
int tmpObj;
int iMax;
final int[] predictionList = new int[nr_class];
System.arraycopy(labels, 0, predictionList, 0, nr_class);
final int nc = nr_class-1;
for (int i=0; i < nc; i++) {
iMax = i;
for (int j=i+1; j < nr_class; j++) {
if (dec_values[j] > dec_values[iMax]) {
iMax = j;
}
}
if (iMax != i) {
tmpDec = dec_values[iMax];
dec_values[iMax] = dec_values[i];
dec_values[i] = tmpDec;
tmpObj = predictionList[iMax];
predictionList[iMax] = predictionList[i];
predictionList[i] = tmpObj;
}
}
return predictionList;
}
public int predict_one(MaltFeatureNode[] x) {
final double[] dec_values = new double[nr_class];
final int n = (bias >= 0)?nr_feature + 1:nr_feature;
final int xlen = x.length;
for (int i=0; i < xlen; i++) {
if (x[i].index <= n) {
final int t = (x[i].index - 1);
if (w[t] != null) {
for (int j = 0; j < w[t].length; j++) {
dec_values[j] += w[t][j] * x[i].value;
}
}
}
}
double max = dec_values[0];
int max_index = 0;
for (int i = 1; i < dec_values.length; i++) {
if (dec_values[i] > max) {
max = dec_values[i];
max_index = i;
}
}
return labels[max_index];
}
private void readObject(ObjectInputStream is) throws ClassNotFoundException, IOException {
is.defaultReadObject();
}
private void writeObject(ObjectOutputStream os) throws IOException {
os.defaultWriteObject();
}
private void loadModel(Reader inputReader) throws IOException {
labels = null;
Pattern whitespace = Pattern.compile("\\s+");
BufferedReader reader = null;
if (inputReader instanceof BufferedReader) {
reader = (BufferedReader)inputReader;
} else {
reader = new BufferedReader(inputReader);
}
try {
String line = null;
while ((line = reader.readLine()) != null) {
String[] split = whitespace.split(line);
if (split[0].equals("solver_type")) {
SolverType solver = SolverType.valueOf(split[1]);
if (solver == null) {
throw new RuntimeException("unknown solver type");
}
solverType = solver;
} else if (split[0].equals("nr_class")) {
nr_class = Util.atoi(split[1]);
Integer.parseInt(split[1]);
} else if (split[0].equals("nr_feature")) {
nr_feature = Util.atoi(split[1]);
} else if (split[0].equals("bias")) {
bias = Util.atof(split[1]);
} else if (split[0].equals("w")) {
break;
} else if (split[0].equals("label")) {
labels = new int[nr_class];
for (int i = 0; i < nr_class; i++) {
labels[i] = Util.atoi(split[i + 1]);
}
} else {
throw new RuntimeException("unknown text in model file: [" + line + "]");
}
}
int w_size = nr_feature;
if (bias >= 0) w_size++;
int nr_w = nr_class;
if (nr_class == 2 && solverType != SolverType.MCSVM_CS) nr_w = 1;
w = new double[w_size][nr_w];
int[] buffer = new int[128];
for (int i = 0; i < w_size; i++) {
for (int j = 0; j < nr_w; j++) {
int b = 0;
while (true) {
int ch = reader.read();
if (ch == -1) {
throw new EOFException("unexpected EOF");
}
if (ch == ' ') {
w[i][j] = Util.atof(new String(buffer, 0, b));
break;
} else {
buffer[b++] = ch;
}
}
}
}
}
finally {
Util.closeQuietly(reader);
}
}
public int hashCode() {
final int prime = 31;
long temp = Double.doubleToLongBits(bias);
int result = prime * 1 + (int)(temp ^ (temp >>> 32));
result = prime * result + Arrays.hashCode(labels);
result = prime * result + nr_class;
result = prime * result + nr_feature;
result = prime * result + ((solverType == null) ? 0 : solverType.hashCode());
for (int i = 0; i < w.length; i++) {
result = prime * result + Arrays.hashCode(w[i]);
}
return result;
}
public boolean equals(Object obj) {
if (this == obj) return true;
if (obj == null) return false;
if (getClass() != obj.getClass()) return false;
MaltLiblinearModel other = (MaltLiblinearModel)obj;
if (Double.doubleToLongBits(bias) != Double.doubleToLongBits(other.bias)) return false;
if (!Arrays.equals(labels, other.labels)) return false;
if (nr_class != other.nr_class) return false;
if (nr_feature != other.nr_feature) return false;
if (solverType == null) {
if (other.solverType != null) return false;
} else if (!solverType.equals(other.solverType)) return false;
for (int i = 0; i < w.length; i++) {
if (other.w.length <= i) return false;
if (!Util.equals(w[i], other.w[i])) return false;
}
return true;
}
public String toString() {
final StringBuilder sb = new StringBuilder("Model");
sb.append(" bias=").append(bias);
sb.append(" nr_class=").append(nr_class);
sb.append(" nr_feature=").append(nr_feature);
sb.append(" solverType=").append(solverType);
return sb.toString();
}
}