![JAR search and dependency download from the Maven repository](/logo.png)
org.maltparser.parser.guide.instance.FeatureDivideModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of maltparser Show documentation
Show all versions of maltparser Show documentation
MaltParser is a system for data-driven dependency parsing, which can be used to induce a parsing model from treebank data and to parse new data using an induced model.
The newest version!
package org.maltparser.parser.guide.instance;
import java.io.BufferedWriter;
import java.io.IOException;
import java.util.SortedMap;
import java.util.TreeMap;
import java.util.TreeSet;
import java.util.regex.Pattern;
import org.maltparser.core.exception.MaltChainedException;
import org.maltparser.core.feature.FeatureModel;
import org.maltparser.core.feature.FeatureVector;
import org.maltparser.core.feature.value.SingleFeatureValue;
import org.maltparser.core.syntaxgraph.DependencyStructure;
import org.maltparser.parser.guide.ClassifierGuide;
import org.maltparser.parser.guide.GuideException;
import org.maltparser.parser.guide.Model;
import org.maltparser.parser.history.action.SingleDecision;
/**
The feature divide model is used for divide the training instances into several models according to
a divide feature. Usually this strategy decrease the training and classification time, but can also decrease
the accuracy of the parser.
@author Johan Hall
*/
public class FeatureDivideModel implements InstanceModel {
private final Model parent;
private final SortedMap divideModels;
// private FeatureVector masterFeatureVector;
private int frequency = 0;
private final int divideThreshold;
private AtomicModel masterModel;
/**
* Constructs a feature divide model.
*
* @param parent the parent guide model.
* @throws MaltChainedException
*/
public FeatureDivideModel(Model parent) throws MaltChainedException {
this.parent = parent;
setFrequency(0);
// this.masterFeatureVector = featureVector;
String data_split_threshold = getGuide().getConfiguration().getOptionValue("guide", "data_split_threshold").toString().trim();
if (data_split_threshold != null) {
try {
divideThreshold = Integer.parseInt(data_split_threshold);
} catch (NumberFormatException e) {
throw new GuideException("The --guide-data_split_threshold option is not an integer value. ", e);
}
} else {
divideThreshold = 0;
}
divideModels = new TreeMap();
if (getGuide().getGuideMode() == ClassifierGuide.GuideMode.BATCH) {
masterModel = new AtomicModel(-1, this);
} else if (getGuide().getGuideMode() == ClassifierGuide.GuideMode.CLASSIFY) {
load();
}
}
public void addInstance(FeatureVector featureVector, SingleDecision decision) throws MaltChainedException {
// featureVector.getFeatureModel().getDivideFeatureFunction().update();
SingleFeatureValue featureValue = (SingleFeatureValue)featureVector.getFeatureModel().getDivideFeatureFunction().getFeatureValue();
if (!divideModels.containsKey(featureValue.getIndexCode())) {
divideModels.put(featureValue.getIndexCode(), new AtomicModel(featureValue.getIndexCode(), this));
}
FeatureVector divideFeatureVector = featureVector.getFeatureModel().getFeatureVector("/" + featureVector.getSpecSubModel().getSubModelName());
divideModels.get(featureValue.getIndexCode()).addInstance(divideFeatureVector, decision);
}
public void noMoreInstances(FeatureModel featureModel) throws MaltChainedException {
for (Integer index : divideModels.keySet()) {
divideModels.get(index).noMoreInstances(featureModel);
}
final TreeSet removeSet = new TreeSet();
for (Integer index : divideModels.keySet()) {
if (divideModels.get(index).getFrequency() <= divideThreshold) {
divideModels.get(index).moveAllInstances(masterModel, featureModel.getDivideFeatureFunction(), featureModel.getDivideFeatureIndexVector());
removeSet.add(index);
}
}
for (Integer index : removeSet) {
divideModels.remove(index);
}
masterModel.noMoreInstances(featureModel);
}
public void finalizeSentence(DependencyStructure dependencyGraph) throws MaltChainedException {
if (divideModels != null) {
for (AtomicModel divideModel : divideModels.values()) {
divideModel.finalizeSentence(dependencyGraph);
}
} else {
throw new GuideException("The feature divide models cannot be found. ");
}
}
public boolean predict(FeatureVector featureVector, SingleDecision decision) throws MaltChainedException {
AtomicModel model = getAtomicModel((SingleFeatureValue)featureVector.getFeatureModel().getDivideFeatureFunction().getFeatureValue());
if (model == null) {
if (getGuide().getConfiguration().isLoggerInfoEnabled()) {
getGuide().getConfiguration().logInfoMessage("Could not predict the next parser decision because there is " +
"no divide or master model that covers the divide value '"+((SingleFeatureValue)featureVector.getFeatureModel().getDivideFeatureFunction().getFeatureValue()).getIndexCode()+"', as default" +
" class code '1' is used. ");
}
decision.addDecision(1); // default prediction
return true;
}
return model.predict(getModelFeatureVector(model, featureVector), decision);
}
public FeatureVector predictExtract(FeatureVector featureVector, SingleDecision decision) throws MaltChainedException {
AtomicModel model = getAtomicModel((SingleFeatureValue)featureVector.getFeatureModel().getDivideFeatureFunction().getFeatureValue());
if (model == null) {
return null;
}
return model.predictExtract(getModelFeatureVector(model, featureVector), decision);
}
public FeatureVector extract(FeatureVector featureVector) throws MaltChainedException {
AtomicModel model = getAtomicModel((SingleFeatureValue)featureVector.getFeatureModel().getDivideFeatureFunction().getFeatureValue());
if (model == null) {
return featureVector;
}
return model.extract(getModelFeatureVector(model, featureVector));
}
private FeatureVector getModelFeatureVector(AtomicModel model, FeatureVector featureVector) {
if (model.getIndex() == -1) {
return featureVector;
} else {
return featureVector.getFeatureModel().getFeatureVector("/" + featureVector.getSpecSubModel().getSubModelName());
}
}
private AtomicModel getAtomicModel(SingleFeatureValue featureValue) throws MaltChainedException {
//((SingleFeatureValue)masterFeatureVector.getFeatureModel().getDivideFeatureFunction().getFeatureValue()).getIndexCode()
if (divideModels != null && divideModels.containsKey(featureValue.getIndexCode())) {
return divideModels.get(featureValue.getIndexCode());
} else if (masterModel != null && masterModel.getFrequency() > 0) {
return masterModel;
}
return null;
}
public void terminate() throws MaltChainedException {
if (divideModels != null) {
for (AtomicModel divideModel : divideModels.values()) {
divideModel.terminate();
}
}
if (masterModel != null) {
masterModel.terminate();
}
}
public void train() throws MaltChainedException {
for (AtomicModel divideModel : divideModels.values()) {
divideModel.train();
}
masterModel.train();
save();
for (AtomicModel divideModel : divideModels.values()) {
divideModel.terminate();
}
masterModel.terminate();
}
/**
* Saves the feature divide model settings .dsm file.
*
* @throws MaltChainedException
*/
protected void save() throws MaltChainedException {
try {
final BufferedWriter out = new BufferedWriter(getGuide().getConfiguration().getOutputStreamWriter(getModelName()+".dsm"));
out.write(masterModel.getIndex() + "\t" + masterModel.getFrequency() + "\n");
if (divideModels != null) {
for (AtomicModel divideModel : divideModels.values()) {
out.write(divideModel.getIndex() + "\t" + divideModel.getFrequency() + "\n");
}
}
out.close();
} catch (IOException e) {
throw new GuideException("Could not write to the guide model settings file '"+getModelName()+".dsm"+"', when " +
"saving the guide model settings to file. ", e);
}
}
protected void load() throws MaltChainedException {
String dsmString = getGuide().getConfiguration().getConfigFileEntryString(getModelName()+".dsm");
String[] lines = dsmString.split("\n");
Pattern tabPattern = Pattern.compile("\t");
// FeatureVector divideFeatureVector = featureVector.getFeatureModel().getFeatureVector("/" + featureVector.getSpecSubModel().getSubModelName());
for (int i = 0; i < lines.length; i++) {
String[] cols = tabPattern.split(lines[i]);
if (cols.length != 2) {
throw new GuideException("");
}
int code = -1;
int freq = 0;
try {
code = Integer.parseInt(cols[0]);
freq = Integer.parseInt(cols[1]);
} catch (NumberFormatException e) {
throw new GuideException("Could not convert a string value into an integer value when loading the feature divide model settings (.dsm). ", e);
}
if (code == -1) {
masterModel = new AtomicModel(-1, this);
masterModel.setFrequency(freq);
} else if (divideModels != null) {
divideModels.put(code, new AtomicModel(code, this));
divideModels.get(code).setFrequency(freq);
}
setFrequency(getFrequency()+freq);
}
}
/**
* Returns the parent model
*
* @return the parent model
*/
public Model getParent() {
return parent;
}
public ClassifierGuide getGuide() {
return parent.getGuide();
}
public String getModelName() throws MaltChainedException {
try {
return parent.getModelName();
} catch (NullPointerException e) {
throw new GuideException("The parent guide model cannot be found. ", e);
}
}
/**
* Returns the frequency (number of instances)
*
* @return the frequency (number of instances)
*/
public int getFrequency() {
return frequency;
}
/**
* Increase the frequency by 1
*/
public void increaseFrequency() {
if (parent instanceof InstanceModel) {
((InstanceModel)parent).increaseFrequency();
}
frequency++;
}
public void decreaseFrequency() {
if (parent instanceof InstanceModel) {
((InstanceModel)parent).decreaseFrequency();
}
frequency--;
}
/**
* Sets the frequency (number of instances)
*
* @param frequency (number of instances)
*/
protected void setFrequency(int frequency) {
this.frequency = frequency;
}
/* (non-Javadoc)
* @see java.lang.Object#toString()
*/
public String toString() {
final StringBuilder sb = new StringBuilder();
//TODO
return sb.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy