All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.pvalsecc.concurrent.FArrayBlockingQueue Maven / Gradle / Ivy

/*
 * Copyright (C) 2008 Patrick Valsecchi
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  U
 */
package org.pvalsecc.concurrent;

import java.util.AbstractQueue;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

/**
 * Very much similar to the JDK ArrayBlockingQueue class.
 * 

* When the producer threads are blocked due to a queue full event, * then the consumer threads will not signal the producers until a * lower mark is reached again. The point is to give maximum CPU * resources to the consumer threads for a while. */ @SuppressWarnings({"CallToSignalInsteadOfSignalAll", "LockAcquiredButNotSafelyReleased", "ObjectEquality", "AssignmentToMethodParameter"}) public final class FArrayBlockingQueue extends AbstractQueue implements BlockingQueue { /** * The queued items */ private final E[] items; /** * items index for next take, poll or remove */ private int takeIndex; /** * items index for next put, offer, or add. */ private int putIndex; /** * Number of items in the queue */ private int count; /** * See JAVAdoc of this class */ private int lowMark; /** * @see #lowMark */ private boolean movingBackToLowMark; /* * Concurrency control uses the classic two-condition algorithm * found in any textbook. */ /** * Main lock guarding all access */ private final ReentrantLock lock; /** * Condition for waiting takes */ private final Condition notEmpty; /** * Condition for waiting puts */ private final Condition notFull; /** * Circularly increment i. */ private int inc(int i) { return (++i == items.length) ? 0 : i; } /** * Insert element at current put position, advance, and signal. * Call only when holding lock. */ private void insert(E x) { items[putIndex] = x; putIndex = inc(putIndex); ++count; if (count == items.length) { movingBackToLowMark = true; } notEmpty.signal(); } /** * Extract element at current take position, advance, and signal. * Call only when holding lock. */ private E extract() { final E[] items = this.items; E x = items[takeIndex]; items[takeIndex] = null; takeIndex = inc(takeIndex); --count; wakeupProducersIfNeeded(); return x; } /** * Call only when holding lock. */ private void wakeupProducersIfNeeded() { if (!movingBackToLowMark) // regular mode { notFull.signalAll(); } else // producers are waiting { if (count <= lowMark) { movingBackToLowMark = false; notFull.signalAll(); } } } /** * Utility for remove and iterator.remove: Delete item at position i. * Call only when holding lock. */ void removeAt(int i) { final E[] items = this.items; // if removing front item, just advance if (i == takeIndex) { items[takeIndex] = null; takeIndex = inc(takeIndex); } else { // slide over all others up through putIndex. for (; ;) { int nexti = inc(i); if (nexti != putIndex) { items[i] = items[nexti]; i = nexti; } else { items[i] = null; putIndex = i; break; } } } --count; notFull.signal(); } /** * Creates an ArrayBlockingQueue with the given (fixed) * capacity and default access policy. * * @param capacity the capacity of this queue * @throws IllegalArgumentException if capacity is less than 1 */ public FArrayBlockingQueue(int capacity) { this(capacity, false); } /** * Creates an ArrayBlockingQueue with the given (fixed) * capacity and the specified access policy. * * @param capacity the capacity of this queue * @param fair if true then queue accesses for threads blocked * on insertion or removal, are processed in FIFO order; if false * the access order is unspecified. * @throws IllegalArgumentException if capacity is less than 1 */ private FArrayBlockingQueue(int capacity, boolean fair) { if (capacity <= 0) { throw new IllegalArgumentException(); } this.items = (E[]) new Object[capacity]; lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); notFull = lock.newCondition(); // This is still experimental: for the time being 1/3 is hardcoded. { //lowMark = capacity - (capacity / 3); lowMark = capacity / 3; } } /** * Inserts the specified element at the tail of this queue if possible, * returning immediately if this queue is full. * * @param o the element to add. * @return true if it was possible to add the element to * this queue, else false * @throws NullPointerException if the specified element is null */ public boolean offer(E o) { if (o == null) { throw new NullPointerException(); } final ReentrantLock lock = this.lock; lock.lock(); try { if (count == items.length) { return false; } else { insert(o); return true; } } finally { lock.unlock(); } } /** * Inserts the specified element at the tail of this queue, waiting if * necessary up to the specified wait time for space to become available. * * @param o the element to add * @param timeout how long to wait before giving up, in units of * unit * @param unit a TimeUnit determining how to interpret the * timeout parameter * @return true if successful, or false if * the specified waiting time elapses before space is available. * @throws InterruptedException if interrupted while waiting. * @throws NullPointerException if the specified element is null. */ public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException { if (o == null) { throw new NullPointerException(); } final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { long nanos = unit.toNanos(timeout); for (; ;) { if (count != items.length) { insert(o); return true; } if (nanos <= 0) { return false; } try { nanos = notFull.awaitNanos(nanos); } catch (InterruptedException ie) { notFull.signal(); // propagate to non-interrupted thread throw ie; } } } finally { lock.unlock(); } } public E poll() { final ReentrantLock lock = this.lock; lock.lock(); try { if (count == 0) { return null; } return extract(); } finally { lock.unlock(); } } public E poll(long timeout, TimeUnit unit) throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { long nanos = unit.toNanos(timeout); for (; ;) { if (count != 0) { return extract(); } if (nanos <= 0) { return null; } try { nanos = notEmpty.awaitNanos(nanos); } catch (InterruptedException ie) { notEmpty.signal(); // propagate to non-interrupted thread throw ie; } } } finally { lock.unlock(); } } /** * Removes a single instance of the specified element from this * queue, if it is present. */ public boolean remove(Object o) { if (o == null) { return false; } final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int k = 0; for (; ;) { if (k++ >= count) { return false; } if (o.equals(items[i])) { removeAt(i); return true; } i = inc(i); } } finally { lock.unlock(); } } public E peek() { final ReentrantLock lock = this.lock; lock.lock(); try { return (count == 0) ? null : items[takeIndex]; } finally { lock.unlock(); } } public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { try { while (count == 0) { notEmpty.await(); } } catch (InterruptedException ie) { notEmpty.signal(); // propagate to non-interrupted thread throw ie; } return extract(); } finally { lock.unlock(); } } /** * Adds the specified element to the tail of this queue, waiting if * necessary for space to become available. * * @param o the element to add * @throws InterruptedException if interrupted while waiting. * @throws NullPointerException if the specified element is null. */ public void put(E o) throws InterruptedException { if (o == null) { throw new NullPointerException(); } final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { try { while (movingBackToLowMark || count == items.length) { notFull.await(); } } catch (InterruptedException ie) { notFull.signal(); // propagate to non-interrupted thread throw ie; } insert(o); } finally { lock.unlock(); } } /** * Like {@link #put(Object)}, but for multiple entries. */ public void put(List objects) throws InterruptedException { final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { try { for (int i = 0; i < objects.size(); i++) { E o = objects.get(i); while (movingBackToLowMark || count == items.length) { notFull.await(); } insert(o); } } catch (InterruptedException ie) { notFull.signal(); // propagate to non-interrupted thread throw ie; } } finally { lock.unlock(); } } /** * @return an approximative number of elements in this queue. */ public int size() { return count; } // this doc comment is a modified copy of the inherited doc comment, // without the reference to unlimited queues. /** * Returns the number of elements that this queue can ideally (in * the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this queue * less the current size of this queue. *

Note that you cannot always tell if * an attempt to add an element will succeed by * inspecting remainingCapacity because it may be the * case that a waiting consumer is ready to take an * element out of an otherwise full queue. */ public int remainingCapacity() { final ReentrantLock lock = this.lock; lock.lock(); try { return items.length - count; } finally { lock.unlock(); } } public boolean contains(Object o) { if (o == null) { return false; } final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int k = 0; while (k++ < count) { if (o.equals(items[i])) { return true; } i = inc(i); } return false; } finally { lock.unlock(); } } public Object[] toArray() { final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { Object[] a = new Object[count]; int k = 0; int i = takeIndex; while (k < count) { a[k++] = items[i]; i = inc(i); } return a; } finally { lock.unlock(); } } public T[] toArray(T[] a) { final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { if (a.length < count) { a = (T[]) java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), count ); } int k = 0; int i = takeIndex; while (k < count) { a[k++] = (T) items[i]; i = inc(i); } if (a.length > count) { a[count] = null; } return a; } finally { lock.unlock(); } } public String toString() { final ReentrantLock lock = this.lock; lock.lock(); try { return super.toString(); } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this queue. * The queue will be empty after this call returns. */ public void clear() { final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int k = count; while (k-- > 0) { items[i] = null; i = inc(i); } count = 0; putIndex = 0; takeIndex = 0; notFull.signalAll(); } finally { lock.unlock(); } } public int drainTo(Collection c) { if (c == null) { throw new NullPointerException(); } if (c == this) { throw new IllegalArgumentException(); } final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int n = 0; int max = count; while (n < max) { c.add(items[i]); items[i] = null; i = inc(i); ++n; } if (n > 0) { count = 0; putIndex = 0; takeIndex = 0; notFull.signalAll(); } return n; } finally { lock.unlock(); } } public int drainTo(Collection c, int maxElements) { if (c == null) { throw new NullPointerException(); } if (c == this) { throw new IllegalArgumentException(); } if (maxElements <= 0) { return 0; } final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int i = takeIndex; int n = 0; int max = (maxElements < count) ? maxElements : count; while (n < max) { c.add(items[i]); items[i] = null; i = inc(i); ++n; } if (n > 0) { count -= n; takeIndex = i; notFull.signalAll(); } return n; } finally { lock.unlock(); } } /** * Same as drainTo, but blocks until at least one element is available. */ public int blockingDrainTo(Collection c, int maxElements) throws InterruptedException { if (c == null) { throw new NullPointerException(); } if (c == this) { throw new IllegalArgumentException(); } if (maxElements <= 0) { return 0; } final E[] items = this.items; final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == 0) { notEmpty.await(); } int i = takeIndex; int n = 0; int max = (maxElements < count) ? maxElements : count; while (n < max) { c.add(items[i]); items[i] = null; i = inc(i); ++n; } if (n > 0) { count -= n; takeIndex = i; wakeupProducersIfNeeded(); } return n; } catch (InterruptedException ie) { notEmpty.signal(); // propagate to non-interrupted thread throw ie; } finally { lock.unlock(); } } /** * Returns an iterator over the elements in this queue in proper sequence. * The returned Iterator is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * * @return an iterator over the elements in this queue in proper sequence. */ public Iterator iterator() { final ReentrantLock lock = this.lock; lock.lock(); try { return new Itr(); } finally { lock.unlock(); } } /** * Iterator for ArrayBlockingQueue */ private class Itr implements Iterator { /** * Index of element to be returned by next, * or a negative number if no such. */ private int nextIndex; /** * nextItem holds on to item fields because once we claim * that an element exists in hasNext(), we must return it in * the following next() call even if it was in the process of * being removed when hasNext() was called. */ private E nextItem; /** * Index of element returned by most recent call to next. * Reset to -1 if this element is deleted by a call to remove. */ private int lastRet; Itr() { lastRet = -1; if (count == 0) { nextIndex = -1; } else { nextIndex = takeIndex; nextItem = items[takeIndex]; } } public boolean hasNext() { /* * No sync. We can return true by mistake here * only if this iterator passed across threads, * which we don't support anyway. */ return nextIndex >= 0; } /** * Check whether nextIndex is valid; if so setting nextItem. * Stops iterator when either hits putIndex or sees null item. */ private void checkNext() { if (nextIndex == putIndex) { nextIndex = -1; nextItem = null; } else { nextItem = items[nextIndex]; if (nextItem == null) { nextIndex = -1; } } } public E next() { final ReentrantLock lock = FArrayBlockingQueue.this.lock; lock.lock(); try { if (nextIndex < 0) { throw new NoSuchElementException(); } lastRet = nextIndex; E x = nextItem; nextIndex = inc(nextIndex); checkNext(); return x; } finally { lock.unlock(); } } public void remove() { final ReentrantLock lock = FArrayBlockingQueue.this.lock; lock.lock(); try { int i = lastRet; if (i == -1) { throw new IllegalStateException(); } lastRet = -1; int ti = takeIndex; removeAt(i); // back up cursor (reset to front if was first element) nextIndex = (i == ti) ? takeIndex : i; checkNext(); } finally { lock.unlock(); } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy