org.oscim.utils.KeyMap Maven / Gradle / Ivy
package org.oscim.utils;
/*
* Copyright 2014 Hannes Janetzek
*
* This file is part of the OpenScienceMap project (http://www.opensciencemap.org).
*
* This program is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along with
* this program. If not, see .
*/
/**
* Stripped down HashMap making HashItem entries public - So you have your custom
* 'Entry' holding key and value. HashItem must implement equals() and hashCode()
* only for the 'key' part. Items may only be in one KeyMap at a time!
*
* KeyMap.put(HashItem, boolean replace) allows to get or add an item in one invocation.
*
* TODO add to NOTICE file
* The VTM library includes software developed as part of the Apache
* Harmony project which is copyright 2006, The Apache Software Foundation and
* released under the Apache License 2.0. http://harmony.apache.org
*/
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import org.oscim.utils.KeyMap.HashItem;
import org.oscim.utils.pool.Inlist;
import java.util.Arrays;
/**
*
* Note: the implementation of {@code KeyMap} is not synchronized. If one thread
* of several threads accessing an instance modifies the map structurally,
* access to the map needs to be synchronized. A structural modification is an
* operation that adds or removes an entry. Changes in the value of an entry are
* not structural changes.
*
* @param the type of keys maintained by this map
*/
public class KeyMap extends Inlist> {
/**
* Min capacity (other than zero) for a HashMap. Must be a power of two
* greater than 1 (and less than 1 << 30).
*/
private static final int MINIMUM_CAPACITY = 4;
/**
* Max capacity for a HashMap. Must be a power of two >= MINIMUM_CAPACITY.
*/
private static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* An empty table shared by all zero-capacity maps (typically from default
* constructor). It is never written to, and replaced on first put. Its size
* is set to half the minimum, so that the first resize will create a
* minimum-sized table.
*/
private static final HashItem[] EMPTY_TABLE = new HashItem[MINIMUM_CAPACITY >>> 1];
/**
* The default load factor. Note that this implementation ignores the
* load factor, but cannot do away with it entirely because it's
* mentioned in the API.
*
*
* Note that this constant has no impact on the behavior of the program, but
* it is emitted as part of the serialized form. The load factor of .75 is
* hardwired into the program, which uses cheap shifts in place of expensive
* division.
*/
static final float DEFAULT_LOAD_FACTOR = .75F;
/**
* The hash table. If this hash map contains a mapping for null, it is
* not represented this hash table.
*/
HashItem[] table;
/**
* The number of mappings in this hash map.
*/
int size;
/**
* The table is rehashed when its size exceeds this threshold.
* The value of this field is generally .75 * capacity, except when
* the capacity is zero, as described in the EMPTY_TABLE declaration
* above.
*/
private int threshold;
/**
* Constructs a new empty {@code HashMap} instance.
*/
public KeyMap() {
table = (HashItem[]) EMPTY_TABLE;
threshold = -1; // Forces first put invocation to replace EMPTY_TABLE
}
/**
* Constructs a new {@code HashMap} instance with the specified capacity.
*
* @param capacity the initial capacity of this hash map.
* @throws IllegalArgumentException when the capacity is less than zero.
*/
public KeyMap(int capacity) {
if (capacity < 0) {
throw new IllegalArgumentException("Capacity: " + capacity);
}
if (capacity == 0) {
HashItem[] tab = (HashItem[]) EMPTY_TABLE;
table = tab;
threshold = -1; // Forces first put() to replace EMPTY_TABLE
return;
}
if (capacity < MINIMUM_CAPACITY) {
capacity = MINIMUM_CAPACITY;
} else if (capacity > MAXIMUM_CAPACITY) {
capacity = MAXIMUM_CAPACITY;
} else {
capacity = roundUpToPowerOfTwo(capacity);
}
makeTable(capacity);
}
/**
* Constructs a new {@code HashMap} instance with the specified capacity and
* load factor.
*
* @param capacity the initial capacity of this hash map.
* @param loadFactor the initial load factor.
* @throws IllegalArgumentException when the capacity is less than zero or the load factor is
* less or equal to zero or NaN.
*/
public KeyMap(int capacity, float loadFactor) {
this(capacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
throw new IllegalArgumentException("Load factor: " + loadFactor);
}
/* Note that this implementation ignores loadFactor; it always uses
* a load factor of 3/4. This simplifies the code and generally
* improves performance. */
}
/**
* Returns an appropriate capacity for the specified initial size. Does
* not round the result up to a power of two; the caller must do this!
* The returned value will be between 0 and MAXIMUM_CAPACITY (inclusive).
*/
static int capacityForInitSize(int size) {
int result = (size >> 1) + size; // Multiply by 3/2 to allow for growth
// boolean expr is equivalent to result >= 0 && result>> 20) ^ (hash >>> 12);
hash ^= (hash >>> 7) ^ (hash >>> 4);
HashItem[] tab = table;
for (HashItem e = tab[hash & (tab.length - 1)]; e != null; e = e.next) {
HashItem eKey = e;
if (eKey == key || (e.hash == hash && key.equals(eKey))) {
return (K) e;
}
}
return null;
}
/**
* Maps the specified key to the specified value.
*
* @param key the key.
* @param value the value.
* @return the value of any previous mapping with the specified key or
* {@code null} if there was no such mapping.
*/
public K put(K key) {
return put(key, true);
}
@SuppressWarnings("unchecked")
public K put(K key, boolean replace) {
if (key.next != null)
throw new IllegalStateException("item not unhooked");
int hash = secondaryHash(key.hashCode());
HashItem[] tab = table;
int index = hash & (tab.length - 1);
for (HashItem e = tab[index]; e != null; e = e.next) {
if (e.hash == hash && key.equals(e)) {
if (replace) {
tab[index] = Inlist.remove(tab[index], e);
tab[index] = Inlist.push(tab[index], key);
}
//V oldValue = e.value;
//e.value = value;
return (K) e; //oldValue;
}
}
// No entry key is present; create one
if (size++ > threshold) {
tab = doubleCapacity();
index = hash & (tab.length - 1);
}
addNewEntry(key, hash, index);
return null;
}
/**
* Removes the mapping with the specified key from this map.
*
* @param key the key of the mapping to remove.
* @return the value of the removed mapping or {@code null} if no mapping
* for the specified key was found.
*/
@SuppressWarnings("unchecked")
public K remove(K key) {
int hash = secondaryHash(key.hashCode());
HashItem[] tab = table;
int index = hash & (tab.length - 1);
for (HashItem e = tab[index], prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && key.equals(e)) {
if (prev == null) {
tab[index] = e.next;
} else {
prev.next = e.next;
}
e.next = null;
//modCount++;
size--;
//postRemove(e);
return (K) e;
}
}
return null;
}
/**
* Creates a new entry for the given key, value, hash, and index and
* inserts it into the hash table. This method is called by put
* (and indirectly, putAll), and overridden by LinkedHashMap. The hash
* must incorporate the secondary hash function.
*/
void addNewEntry(K key, int hash, int index) {
key.setIndex(hash, table[index]);
table[index] = key;
}
/**
* Allocate a table of the given capacity and set the threshold accordingly.
*
* @param newCapacity must be a power of two
*/
private HashItem[] makeTable(int newCapacity) {
HashItem[] newTable = (HashItem[]) new HashItem[newCapacity];
table = newTable;
threshold = (newCapacity >> 1) + (newCapacity >> 2); // 3/4 capacity
return newTable;
}
/**
* Doubles the capacity of the hash table. Existing entries are placed in
* the correct bucket on the enlarged table. If the current capacity is,
* MAXIMUM_CAPACITY, this method is a no-op. Returns the table, which
* will be new unless we were already at MAXIMUM_CAPACITY.
*/
private HashItem[] doubleCapacity() {
HashItem[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
return oldTable;
}
int newCapacity = oldCapacity * 2;
HashItem[] newTable = makeTable(newCapacity);
if (size == 0) {
return newTable;
}
for (int j = 0; j < oldCapacity; j++) {
/* Rehash the bucket using the minimum number of field writes.
* This is the most subtle and delicate code in the class. */
HashItem e = oldTable[j];
if (e == null) {
continue;
}
int highBit = e.hash & oldCapacity;
HashItem broken = null;
newTable[j | highBit] = e;
for (HashItem n = e.next; n != null; e = n, n = n.next) {
int nextHighBit = n.hash & oldCapacity;
if (nextHighBit != highBit) {
if (broken == null)
newTable[j | nextHighBit] = n;
else
broken.next = n;
broken = e;
highBit = nextHighBit;
}
}
if (broken != null)
broken.next = null;
}
return newTable;
}
/**
* Subclass overrides this method to unlink entry.
*/
void postRemove(HashItem e) {
}
/**
* Removes all mappings from this hash map, leaving it empty.
*
* @see #isEmpty
* @see #size
*/
public void clear() {
if (size != 0) {
Arrays.fill(table, null);
size = 0;
}
}
static final boolean STATS = false;
@SuppressWarnings("unchecked")
public K releaseItems() {
if (size == 0)
return null;
int collisions = 0;
int max = 0;
int sum = 0;
HashItem items = null;
HashItem last;
for (int i = 0, n = table.length; i < n; i++) {
HashItem item = table[i];
if (item == null)
continue;
table[i] = null;
if (STATS) {
sum = 0;
last = item;
while (last != null) {
if (last.next == null)
break;
sum++;
last = last.next;
}
max = Math.max(max, sum);
collisions += sum;
} else {
last = Inlist.last(item);
}
last.next = items;
items = item;
}
if (STATS)
System.out.println("collisions: " + collisions + " " + max + " " + size);
Arrays.fill(table, null);
size = 0;
return (K) items;
}
public static class HashItem extends Inlist {
int hash;
public void setIndex(int hash, HashItem next) {
this.hash = hash;
this.next = next;
}
}
/**
* Applies a supplemental hash function to a given hashCode, which defends
* against poor quality hash functions. This is critical because HashMap
* uses power-of-two length hash tables, that otherwise encounter collisions
* for hashCodes that do not differ in lower or upper bits.
*/
private static int secondaryHash(int h) {
// Doug Lea's supplemental hash function
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
/**
* Returns the smallest power of two >= its argument, with several caveats:
* If the argument is negative but not Integer.MIN_VALUE, the method returns
* zero. If the argument is > 2^30 or equal to Integer.MIN_VALUE, the method
* returns Integer.MIN_VALUE. If the argument is zero, the method returns
* zero.
*/
private static int roundUpToPowerOfTwo(int i) {
i--; // If input is a power of two, shift its high-order bit right
// "Smear" the high-order bit all the way to the right
i |= i >>> 1;
i |= i >>> 2;
i |= i >>> 4;
i |= i >>> 8;
i |= i >>> 16;
return i + 1;
}
// public K put(K key) {
// // if (key == null) {
// // return putValueForNullKey(value);
// // }
//
// int hash = secondaryHash(key.hashCode());
// HashItem[] tab = table;
// int index = hash & (tab.length - 1);
// for (HashItem e = tab[index]; e != null; e = e.next) {
// if (e.hash == hash && key.equals(e.key)) {
// preModify(e);
// //V oldValue = e.value;
// //e.value = value;
// return e.key; //oldValue;
// }
// }
//
// // No entry for (non-null) key is present; create one
// modCount++;
// if (size++ > threshold) {
// tab = doubleCapacity();
// index = hash & (tab.length - 1);
// }
// addNewEntry(key, hash, index);
// return null;
// }
// private V putValueForNullKey(V value) {
// HashMapEntry entry = entryForNullKey;
// if (entry == null) {
// addNewEntryForNullKey(value);
// size++;
// modCount++;
// return null;
// } else {
// preModify(entry);
// V oldValue = entry.value;
// entry.value = value;
// return oldValue;
// }
// }
// /**
// * Returns whether this map contains the specified key.
// *
// * @param key
// * the key to search for.
// * @return {@code true} if this map contains the specified key,
// * {@code false} otherwise.
// */
// //@Override
// public boolean containsKey(Object key) {
// if (key == null) {
// return entryForNullKey != null;
// }
//
// // Doug Lea's supplemental secondaryHash function (inlined)
// int hash = key.hashCode();
// hash ^= (hash >>> 20) ^ (hash >>> 12);
// hash ^= (hash >>> 7) ^ (hash >>> 4);
//
// HashItem[] tab = table;
// for (HashItem e = tab[hash & (tab.length - 1)]; e != null; e = e.next) {
// K eKey = e.key;
// if (eKey == key || (e.hash == hash && key.equals(eKey))) {
// return true;
// }
// }
// return false;
// }
// /**
// * Returns whether this map contains the specified value.
// *
// * @param value
// * the value to search for.
// * @return {@code true} if this map contains the specified value,
// * {@code false} otherwise.
// */
// @Override
// public boolean containsValue(Object value) {
// HashMapEntry[] tab = table;
// int len = tab.length;
// if (value == null) {
// for (int i = 0; i < len; i++) {
// for (HashMapEntry e = tab[i]; e != null; e = e.next) {
// if (e.value == null) {
// return true;
// }
// }
// }
// return entryForNullKey != null && entryForNullKey.value == null;
// }
//
// // value is non-null
// for (int i = 0; i < len; i++) {
// for (HashMapEntry e = tab[i]; e != null; e = e.next) {
// if (value.equals(e.value)) {
// return true;
// }
// }
// }
// return entryForNullKey != null && value.equals(entryForNullKey.value);
// }
///**
// * Ensures that the hash table has sufficient capacity to store the
// * specified number of mappings, with room to grow. If not, it increases the
// * capacity as appropriate. Like doubleCapacity, this method moves existing
// * entries to new buckets as appropriate. Unlike doubleCapacity, this method
// * can grow the table by factors of 2^n for n > 1. Hopefully, a single call
// * to this method will be faster than multiple calls to doubleCapacity.
// *
// *
// * This method is called only by putAll.
// */
//private void ensureCapacity(int numMappings) {
// int newCapacity = roundUpToPowerOfTwo(capacityForInitSize(numMappings));
// HashItem[] oldTable = table;
// int oldCapacity = oldTable.length;
// if (newCapacity <= oldCapacity) {
// return;
// }
// if (newCapacity == oldCapacity * 2) {
// doubleCapacity();
// return;
// }
//
// // We're growing by at least 4x, rehash in the obvious way
// HashItem[] newTable = makeTable(newCapacity);
// if (size != 0) {
// int newMask = newCapacity - 1;
// for (int i = 0; i < oldCapacity; i++) {
// for (HashItem e = oldTable[i]; e != null;) {
// HashItem oldNext = e.next;
// int newIndex = e.hash & newMask;
// HashItem newNext = newTable[newIndex];
// newTable[newIndex] = e;
// e.next = newNext;
// e = oldNext;
// }
// }
// }
//}
}