Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2012, 2013 Hannes Janetzek
* Copyright 2018-2019 Gustl22
*
* This file is part of the OpenScienceMap project (http://www.opensciencemap.org).
*
* This program is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along with
* this program. If not, see .
*/
package org.oscim.utils.geom;
import java.util.ArrayList;
import java.util.List;
// TODO Utils can be improved e.g. by avoiding object creations
public final class GeometryUtils {
private GeometryUtils() {
}
/**
* Test if point x/y is in polygon defined by vertices[offset ...
* offset+length]
*
* -- from www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
*
* If there is only one connected component, then it is optional to repeat
* the first vertex at the end. It's also optional to surround the component
* with zero vertices.
*
* The polygon may contain multiple separate components, and/or holes,
* provided that you separate the components and holes with a (0,0) vertex,
* as follows.
*
First, include a (0,0) vertex.
*
Then include the first component' vertices, repeating its first
* vertex after the last vertex.
*
Include another (0,0) vertex.
*
Include another component or hole, repeating its first vertex after
* the last vertex.
*
Repeat the above two steps for each component and hole.
*
Include a final (0,0) vertex.
*
* Each component or hole's vertices may be listed either clockwise or
* counter-clockwise.
*/
public static boolean pointInPoly(float x, float y, float[] vertices,
int length, int offset) {
int end = (offset + length);
boolean inside = false;
for (int i = offset, j = (end - 2); i < end; j = i, i += 2) {
if (((vertices[i + 1] > y) != (vertices[j + 1] > y)) &&
(x < (vertices[j] - vertices[i]) * (y - vertices[i + 1])
/ (vertices[j + 1] - vertices[i + 1]) + vertices[i]))
inside = !inside;
}
return inside;
}
/**
* Returns the unsigned area of polygon.
*
* @param size the number of point coordinates
* @return unsigned polygon area
*/
public static float area(float[] points, int size) {
float area = isClockwise(points, size);
return area < 0 ? -area : area;
}
public static float area(float ax, float ay, float bx, float by, float cx, float cy) {
float area = ((ax - cx) * (by - cy)
- (bx - cx) * (ay - cy));
return (area < 0 ? -area : area) * 0.5f;
}
public static float area(float[] a, int p1, int p2, int p3) {
float area = ((a[p1] - a[p3]) * (a[p2 + 1] - a[p3 + 1])
- (a[p2] - a[p3]) * (a[p1 + 1] - a[p3 + 1]));
return (area < 0 ? -area : area) * 0.5f;
}
/**
* @param v1 the first normalized vector
* @param v2 the second normalized vector
* @return the bisection of the to vectors
*/
public static float[] bisectionNorm2D(float[] v1, float[] v2) {
// Normalize vectors
/*float absBA = (float) Math.sqrt(v1[0] * v1[0] + v1[1] * v1[1]);
float absBC = (float) Math.sqrt(v2[0] * v2[0] + v2[1] * v2[1]);
v1[0] /= absBA;
v1[1] /= absBA;
v2[0] /= absBC;
v2[1] /= absBC;*/
float[] bisection = new float[2];
bisection[0] = v1[0] + v2[0];
bisection[1] = v1[1] + v2[1];
if (bisection[0] == 0 && bisection[1] == 0) {
// 90 degree to v1
bisection[0] = v1[1];
bisection[1] = -v1[0];
}
return bisection;
}
/**
* Calculates the center of a set of points.
*
* @param points the points array
* @param pointPos the start position of points
* @param n the number of points
* @param out the center output
* @return the center of points
*/
public static float[] center(float[] points, int pointPos, int n, float[] out) {
if (out == null)
out = new float[2];
for (int i = 0; i < n; i += 2, pointPos += 2) {
out[0] += points[pointPos];
out[1] += points[pointPos + 1];
}
out[0] = out[0] * 2 / n;
out[1] = out[1] * 2 / n;
return out;
}
/**
* Calculate the closest point on a line.
* See: https://en.wikipedia.org/wiki/Vector_projection#Vector_projection_2
*
* @param pP point
* @param pL point of line
* @param vL vector of line
* @return the closest point on line
*/
public static float[] closestPointOnLine2D(float[] pP, float[] pL, float[] vL) {
float[] vPL = diffVec(pL, pP);
float[] vPS = diffVec(vPL, scale(vL, dotProduct(vPL, vL) / dotProduct(vL, vL)));
return sumVec(pP, vPS);
}
/**
* @param a first vector
* @param b second vector
* @return a - b
*/
public static float[] diffVec(float[] a, float[] b) {
float[] diff = new float[Math.min(a.length, b.length)];
for (int i = 0; i < diff.length; i++) {
diff[i] = a[i] - b[i];
}
return diff;
}
/**
* @param a first vector
* @param b second vector
* @return a + b
*/
public static float[] sumVec(float[] a, float[] b) {
float[] add = new float[Math.min(a.length, b.length)];
for (int i = 0; i < add.length; i++) {
add[i] = b[i] + a[i];
}
return add;
}
public static float squaredDistance(float[] p, int a, int b) {
return (p[a] - p[b]) * (p[a] - p[b]) + (p[a + 1] - p[b + 1]) * (p[a + 1] - p[b + 1]);
}
/**
* square distance from a point a to a segment b,c
*/
// modified from https://github.com/ekeneijeoma/simplify-java
public static float squareSegmentDistance(float[] p, int a, int b, int c) {
float x = p[b];
float y = p[b + 1];
float dx = p[c] - x;
float dy = p[c + 1] - y;
if (dx != 0 || dy != 0) {
float t = ((p[a] - x) * dx + (p[a + 1] - y) * dy) / (dx * dx + dy * dy);
if (t > 1) {
x = p[c];
y = p[c + 1];
} else if (t > 0) {
x += dx * t;
y += dy * t;
}
}
dx = p[a] - x;
dy = p[a + 1] - y;
return dx * dx + dy * dy;
}
public static double distance(float[] p, int a, int b) {
float dx = p[a] - p[b];
float dy = p[a + 1] - p[b + 1];
return Math.sqrt(dx * dx + dy * dy);
}
/**
* @param a point a[x,y]
* @param b point b[x,y]
* @return the distance between a and b.
*/
public static double distance2D(float[] a, float[] b) {
float dx = a[0] - b[0];
float dy = a[1] - b[1];
return Math.sqrt(dx * dx + dy * dy);
}
/**
* Calculate the distance from a point to a line.
* See: https://en.wikipedia.org/wiki/Vector_projection#Vector_projection_2
*
* @param pP point
* @param pL point of line
* @param vL vector of line
* @return the minimum distance between line and point
*/
public static float distancePointLine2D(float[] pP, float[] pL, float[] vL) {
float[] vPL = diffVec(pL, pP);
float[] vPS = diffVec(vPL, scale(vL, dotProduct(vPL, vL) / dotProduct(vL, vL)));
return (float) Math.sqrt(dotProduct(vPS, vPS));
}
public static double dotProduct(float[] p, int a, int b, int c) {
double ux = (p[b] - p[a]);
double uy = (p[b + 1] - p[a + 1]);
double ab = Math.sqrt(ux * ux + uy * uy);
double vx = (p[b] - p[c]);
double vy = (p[b + 1] - p[c + 1]);
double bc = Math.sqrt(vx * vx + vy * vy);
double d = ab * bc;
if (d <= 0)
return 0;
double dotp = (ux * -vx + uy * -vy) / d;
if (dotp > 1)
dotp = 1;
else if (dotp < -1)
dotp = -1;
return dotp;
}
/**
* @param a first vector
* @param b second vector
* @return the dot product
*/
public static float dotProduct(float[] a, float[] b) {
float dp = 0;
for (int i = 0; i < a.length; i++) {
dp += a[i] * b[i];
}
return dp;
}
/**
* @param pA position vector of A
* @param vA direction vector of A
* @param pB position vector of B
* @param vB direction vector of B
* @return the intersection point
*/
public static float[] intersectionLines2D(float[] pA, float[] vA, float[] pB, float[] vB) {
// pA + ldA * vA == pB + ldB * vB;
float det = vB[0] * vA[1] - vB[1] * vA[0];
if (det == 0) {
// log.debug(vA.toString() + "and" + vB.toString() + "do not intersect");
return null;
}
float lambA = ((pB[1] - pA[1]) * vB[0] - (pB[0] - pA[0]) * vB[1]) / det;
float[] intersection = new float[2];
intersection[0] = pA[0] + lambA * vA[0];
intersection[1] = pA[1] + lambA * vA[1];
return intersection;
}
/**
* Calculate intersection of a plane with a line
*
* @param pL position vector of line
* @param vL direction vector of line
* @param pP position vector of plane
* @param vP normal vector of plane
* @return the intersection point
*/
public static float[] intersectionLinePlane(float[] pL, float[] vL, float[] pP, float[] vP) {
float det = dotProduct(vL, vP);
if (det == 0) return null;
float phi = dotProduct(diffVec(pP, pL), vP) / det;
return sumVec(scale(vL, phi), pL);
}
/**
* Is polygon clockwise.
* Note that the coordinate system is left hand side.
*
* @param points the points array
* @param size the number of point coordinates
* @return the signed area of the polygon
* positive: clockwise
* negative: counter-clockwise
* 0: collinear
*/
public static float isClockwise(float[] points, int size) {
float area = 0f;
for (int i = 0; i < size - 2; i += 2) {
area += (points[i] * points[i + 3]) - (points[i + 1] * points[i + 2]);
}
area += (points[size - 2] * points[1]) - (points[size - 1] * points[0]);
return 0.5f * area;
}
/**
* Indicates the turn of tris pA-pB-pC.
* Note that the coordinate system is left hand side.
*
* @return positive: clockwise
* negative: counter-clockwise
* 0: collinear
*/
public static float isTrisClockwise(float[] pA, float[] pB, float[] pC) {
return (pB[0] - pA[0]) * (pC[1] - pA[1]) - (pB[1] - pA[1]) * (pC[0] - pA[0]);
}
/**
* @return the length of the vector
*/
public static double length(float[] vec) {
float length = 0f;
for (float coord : vec) {
length += coord * coord;
}
return Math.sqrt(length);
}
/**
* @return the normalized vector (with length 1)
*/
public static float[] normalize(float[] vec) {
return scale(vec, 1f / (float) length(vec));
}
/**
* Calculate the normalized direction vectors of point list (polygon)
*
* @param points the list of 2D points
* @param outLengths the optional list to store lengths of vectors
* @return the normalized direction vectors
*/
public static List normalizedVectors2D(List points, List outLengths) {
List normVectors = new ArrayList<>();
for (int i = 0; i < points.size(); i++) {
float[] pA = points.get(i);
float[] pB = points.get((i + 1) % points.size());
float[] vBA = diffVec(pB, pA);
// Get length of AB
float length = (float) Math.sqrt(vBA[0] * vBA[0] + vBA[1] * vBA[1]);
if (outLengths != null)
outLengths.add(length);
vBA[0] /= length; // Normalize vector
vBA[1] /= length;
normVectors.add(vBA);
}
return normVectors;
}
/**
* @param pA first point of plane
* @param pB second point of plane
* @param pC third point of plane
* @return the normal of plane
*/
public static float[] normalOfPlane(float[] pA, float[] pB, float[] pC) {
// Calculate normal for color gradient
float[] BA = diffVec(pB, pA);
float[] BC = diffVec(pC, pA);
// Vector product (c is at right angle to a and b)
float[] normal = new float[3];
normal[0] = BA[1] * BC[2] - BA[2] * BC[1];
normal[1] = BA[2] * BC[0] - BA[0] * BC[2];
normal[2] = BA[0] * BC[1] - BA[1] * BC[0];
return normal;
}
/**
* @param v the vector
* @param scale the scale
* @return the scaled vector
*/
public static float[] scale(float[] v, float scale) {
float[] scaled = new float[v.length];
for (int i = 0; i < v.length; i++) {
scaled[i] = v[i] * scale;
}
return scaled;
}
}