org.mariuszgromada.math.mxparser.mathcollection.BooleanAlgebra Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of MathParser.org-mXparser Show documentation
Show all versions of MathParser.org-mXparser Show documentation
mXparser is a super easy, rich, fast and highly flexible math expression parser library (parser and evaluator of mathematical expressions / formulas provided as plain text / string). Software delivers easy to use API for JAVA, Android and C# .NET/MONO (Common Language Specification compliant: F#, Visual Basic, C++/CLI). *** If you find the software useful donation is something you might consider: https://mathparser.org/donate/ *** Scalar Scientific Calculator, Charts and Scripts, Scalar Lite: https://play.google.com/store/apps/details?id=org.mathparser.scalar.lite *** Scalar Pro: https://play.google.com/store/apps/details?id=org.mathparser.scalar.pro *** ScalarMath.org: https://scalarmath.org/ *** MathSpace.pl: https://mathspace.pl/ ***
/*
* @(#)BooleanAlgebra.java 4.4.3 2022-05-28
*
* MathParser.org-mXparser DUAL LICENSE AGREEMENT as of date 2022-05-22
* The most up-to-date license is available at the below link:
* - https://mathparser.org/mxparser-license
*
* AUTHOR: Copyright 2010 - 2022 Mariusz Gromada - All rights reserved
* PUBLISHER: INFIMA - https://payhip.com/infima
*
* SOFTWARE means source code and/or binary form and/or documentation.
* PRODUCT: MathParser.org-mXparser SOFTWARE
* LICENSE: DUAL LICENSE AGREEMENT
*
* BY INSTALLING, COPYING, OR OTHERWISE USING THE PRODUCT, YOU AGREE TO BE
* BOUND BY ALL OF THE TERMS AND CONDITIONS OF THE DUAL LICENSE AGREEMENT.
*
* AUTHOR & PUBLISHER provide the PRODUCT under the DUAL LICENSE AGREEMENT
* model designed to meet the needs of both non-commercial use as well as
* commercial use.
*
* NON-COMMERCIAL USE means any use or activity where a fee is not charged
* and the purpose is not the sale of a good or service, and the use or
* activity is not intended to produce a profit. NON-COMMERCIAL USE examples:
*
* 1. Free Open-Source Software ("FOSS").
* 2. Non-commercial use in research, scholarly and education.
*
* COMMERCIAL USE means any use or activity where a fee is charged or the
* purpose is the sale of a good or service, or the use or activity is
* intended to produce a profit. COMMERCIAL USE examples:
*
* 1. OEMs (Original Equipment Manufacturers).
* 2. ISVs (Independent Software Vendors).
* 3. VARs (Value Added Resellers).
* 4. Other distributors that combine and distribute commercially licensed
* software.
*
* IN CASE YOU WANT TO USE THE PRODUCT COMMERCIALLY, YOU MUST PURCHASE THE
* APPROPRIATE LICENSE FROM "INFIMA" ONLINE STORE, STORE ADDRESS:
*
* 1. https://mathparser.org/order-commercial-license
* 2. https://payhip.com/infima
*
* NON-COMMERCIAL LICENSE
*
* Redistribution and use of the PRODUCT in source and/or binary forms,
* with or without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain unmodified content of the
* entire MathParser.org-mXparser DUAL LICENSE AGREEMENT, including
* definition of NON-COMMERCIAL USE, definition of COMMERCIAL USE,
* NON-COMMERCIAL LICENSE conditions, COMMERCIAL LICENSE conditions, and
* the following DISCLAIMER.
* 2. Redistributions in binary form must reproduce the entire content of
* MathParser.org-mXparser DUAL LICENSE AGREEMENT in the documentation
* and/or other materials provided with the distribution, including
* definition of NON-COMMERCIAL USE, definition of COMMERCIAL USE,
* NON-COMMERCIAL LICENSE conditions, COMMERCIAL LICENSE conditions, and
* the following DISCLAIMER.
*
* COMMERCIAL LICENSE
*
* 1. Before purchasing a commercial license, AUTHOR & PUBLISHER allow you
* to download, install and use up to three copies of the PRODUCT to
* perform integration tests, confirm the quality of the PRODUCT and
* its suitability. The testing period should be limited to fourteen
* days. Tests should be performed under the conditions of test
* environments. The purpose of the tests must not be to generate profit.
* 2. Provided that you purchased a license from "INFIMA" online store
* (store address: https://mathparser.org/order-commercial-license or
* https://payhip.com/infima), and you comply with all below terms and
* conditions, and you have acknowledged and understood the following
* DISCLAIMER, AUTHOR & PUBLISHER grant you a nonexclusive license
* including the following rights:
* 3. The license has been granted only to you, i.e., the person or entity
* that made the purchase, who is identified and confirmed by the data
* provided during the purchase.
* 4. In case you purchased a license in the "ONE-TIME PURCHASE" model,
* the license has been granted only for the PRODUCT version specified
* in the purchase. The upgrade policy gives you additional rights and
* is described in the dedicated section below.
* 5. In case you purchased a license in the "SUBSCRIPTION" model, you can
* install and use any version of the PRODUCT, but only during the
* subscription validity period.
* 6. In case you purchased a "SINGLE LICENSE" you can install and use the
* PRODUCT from one workstation.
* 7. Additional copies of the PRODUCT can be installed and used from more
* than one workstation; however, this number is limited to the number
* of workstations purchased as per order.
* 8. In case you purchased a "SITE LICENSE ", the PRODUCT can be installed
* and used from all workstations located at your premises.
* 9. You may incorporate the unmodified PRODUCT into your own products
* and software.
* 10. If you purchased a license with the "SOURCE CODE" option, you may
* modify the PRODUCT's source code and incorporate the modified source
* code into your own products and/or software.
* 11. Provided that the license validity period has not expired, you may
* distribute your product and/or software with the incorporated
* PRODUCT royalty-free.
* 12. You may make copies of the PRODUCT for backup and archival purposes.
* 13. AUTHOR & PUBLISHER reserve all rights not expressly granted to you
* in this agreement.
*
* ADDITIONAL CLARIFICATION ON WORKSTATION
*
* A workstation is a device, a remote device, or a virtual device, used by
* you, your employees, or other entities to whom you have commissioned the
* tasks. For example, the number of workstations may refer to the number
* of software developers, engineers, architects, scientists, and other
* professionals who use the PRODUCT on your behalf. The number of
* workstations is not the number of copies of your end-product that you
* distribute to your end-users.
*
* By purchasing the COMMERCIAL LICENSE, you only pay for the number of
* workstations, while the number of copies of your final product
* (delivered to your end-users) is not limited.
*
* UPGRADE POLICY
*
* The PRODUCT is versioned according to the following convention:
*
* [MAJOR].[MINOR].[PATCH]
*
* 1. COMMERCIAL LICENSE holders can install and use the updated version
* for bug fixes free of charge, i.e. if you have purchased a license
* for the [MAJOR].[MINOR] version (e.g.: 5.0), you can freely install
* all the various releases specified in the [PATCH] version (e.g.: 5.0.2).
* The license terms remain unchanged after the update.
* 2. COMMERCIAL LICENSE holders for [MAJOR].[MINOR] version (e.g.: 5.0)
* can install and use the updated version [MAJOR].[MINOR + 1] free of
* charge, i.e., plus one release in the [MINOR] range (e.g.: 5.1). The
* license terms remain unchanged after the update.
* 3. COMMERCIAL LICENSE holders who wish to upgrade their version, but are
* not eligible for the free upgrade, can claim a discount when
* purchasing the upgrade. For this purpose, please contact us via e-mail.
*
* DISCLAIMER
*
* THIS PRODUCT IS PROVIDED BY AUTHOR & PUBLISHER "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL AUTHOR OR PUBLISHER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS PRODUCT, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* THE VIEWS AND CONCLUSIONS CONTAINED IN THE PRODUCT AND DOCUMENTATION ARE
* THOSE OF THE AUTHORS AND SHOULD NOT BE INTERPRETED AS REPRESENTING
* OFFICIAL POLICIES, EITHER EXPRESSED OR IMPLIED, OF AUTHOR OR PUBLISHER.
*
* CONTACT
*
* - e-mail: [email protected]
* - website: https://mathparser.org
* - source code: https://github.com/mariuszgromada/MathParser.org-mXparser
* - online store: https://mathparser.org/order-commercial-license
* - online store: https://payhip.com/infima
*/
package org.mariuszgromada.math.mxparser.mathcollection;
import org.mariuszgromada.math.mxparser.mXparser;
/**
* BooleanAlgebra - class for boolean operators.
*
* @author Mariusz Gromada
* [email protected]
* MathSpace.pl
* MathParser.org - mXparser project page
* mXparser on GitHub
* mXparser on SourceForge
* mXparser on Bitbucket
* mXparser on CodePlex
* Janet Sudoku - project web page
* Janet Sudoku on GitHub
* Janet Sudoku on CodePlex
* Janet Sudoku on SourceForge
* Janet Sudoku on BitBucket
* Scalar Free
* Scalar Pro
* ScalarMath.org
*
* @version 4.3.0
*/
public final class BooleanAlgebra {
/**
* False as integer
*/
public static final int FALSE = 0;
/**
* True as integer
*/
public static final int TRUE = 1;
/**
* Null as integer
*/
public static final int NULL = 2;
/**
* False as double
*/
public static final double F = 0;
/**
* True as double
*/
public static final double T = 1;
/**
* Null as double
*/
public static final double N = Double.NaN;
/**
* AND truth table
*/
public static final double[][] AND_TRUTH_TABLE = {
/* F T N
/* F */ { F, F, F} ,
/* T */ { F, T, N} ,
/* N */ { F, N, N}
};
/**
* NAND truth table
*/
public static final double[][] NAND_TRUTH_TABLE = {
/* F T N
/* F */ { T, T, T} ,
/* T */ { T, F, N} ,
/* N */ { T, N, N}
};
/**
* OR truth table
*/
public static final double[][] OR_TRUTH_TABLE = {
/* F T N
/* F */ { F, T, N} ,
/* T */ { T, T, T} ,
/* N */ { N, T, N}
};
/**
* NOR truth table
*/
public static final double[][] NOR_TRUTH_TABLE = {
/* F T N
/* F */ { T, F, N} ,
/* T */ { F, F, F} ,
/* N */ { N, F, N}
};
/**
* XOR truth table
*/
public static final double[][] XOR_TRUTH_TABLE = {
/* F T N
/* F */ { F, T, N} ,
/* T */ { T, F, N} ,
/* N */ { N, N, N}
};
/**
* XNOR truth table
*/
public static final double[][] XNOR_TRUTH_TABLE = {
/* F T N
/* F */ { T, F, N} ,
/* T */ { F, T, N} ,
/* N */ { N, N, N}
};
/**
* IMP truth table
*/
public static final double[][] IMP_TRUTH_TABLE = {
/* F T N
/* F */ { T, T, T} ,
/* T */ { F, T, N} ,
/* N */ { N, T, N}
};
/**
* CIMP truth table
*/
public static final double[][] CIMP_TRUTH_TABLE = {
/* F T N
/* F */ { T, F, N} ,
/* T */ { T, T, T} ,
/* N */ { T, N, N}
};
/**
* EQV truth table
*/
public static final double[][] EQV_TRUTH_TABLE = {
/* F T N
/* F */ { T, F, N} ,
/* T */ { F, T, N} ,
/* N */ { N, N, N}
};
/**
* NIMP truth table
*/
public static final double[][] NIMP_TRUTH_TABLE = {
/* F T N
/* F */ { F, F, F} ,
/* T */ { T, F, N} ,
/* N */ { N, F, N}
};
/**
* CNIMP truth table
*/
public static final double[][] CNIMP_TRUTH_TABLE = {
/* F T N
/* F */ { F, T, N} ,
/* T */ { F, F, F} ,
/* N */ { F, N, N}
};
/**
* NOT truth table
*/
public static final double[] NOT_TRUTH_TABLE = {
/* F T N */
T, F, N
};
/**
* Double to integer boolean translation
*
* @param a the double number
*
* @return If a = Double.NaN return NULL,
* else if a <> 0 return TRUE,
* else return FALSE.
*/
public static final int double2IntBoolean(double a) {
if ( Double.isNaN(a) )
return NULL;
if ( BinaryRelations.epsilonComparison ) {
/* Epsilon comparison mode */
if ( MathFunctions.abs(a) > BinaryRelations.epsilon )
return TRUE;
else
return FALSE;
} else {
/* Exact comparison mode */
if ( a != 0 )
return TRUE;
else
return FALSE;
}
}
/**
* Boolean AND
*
* @param a the a number (a AND b)
* @param b the b number (a AND b)
*
* @return Truth table element AND[A][B] where A = double2IntBoolean(a), B = double2IntBoolean(b)
*/
public static final double and(double a, double b) {
int A = double2IntBoolean(a);
int B = double2IntBoolean(b);
return AND_TRUTH_TABLE[A][B];
}
/**
* Boolean OR
*
* @param a the a number (a OR b)
* @param b the b number (a OR b)
*
* @return Truth table element OR[A][B]
* where A = double2IntBoolean(a), B = double2IntBoolean(b)
*/
public static final double or(double a, double b) {
int A = double2IntBoolean(a);
int B = double2IntBoolean(b);
return OR_TRUTH_TABLE[A][B];
}
/**
* Boolean XOR
*
* @param a the a number (a XOR b)
* @param b the b number (a XOR b)
*
* @return Truth table element XOR[A][B]
* where A = double2IntBoolean(a), B = double2IntBoolean(b)
*/
public static final double xor(double a, double b) {
int A = double2IntBoolean(a);
int B = double2IntBoolean(b);
return XOR_TRUTH_TABLE[A][B];
}
/**
* Boolean NAND
*
* @param a the a number (a NAND b)
* @param b the b number (a NAND b)
*
* @return Truth table element NAND[A][B]
* where A = double2IntBoolean(a), B = double2IntBoolean(b)
*/
public static final double nand(double a, double b) {
int A = double2IntBoolean(a);
int B = double2IntBoolean(b);
return NAND_TRUTH_TABLE[A][B];
}
/**
* Boolean NOR
*
* @param a the a number (a NOR b)
* @param b the b number (a NOR b)
*
* @return Truth table element NOR[A][B]
* where A = double2IntBoolean(a), B = double2IntBoolean(b)
*/
public static final double nor(double a, double b) {
int A = double2IntBoolean(a);
int B = double2IntBoolean(b);
return NOR_TRUTH_TABLE[A][B];
}
/**
* Boolean XNOR
*
* @param a the a number (a XNOR b)
* @param b the b number (a XNOR b)
*
* @return Truth table element XNOR[A][B]
* where A = double2IntBoolean(a), B = double2IntBoolean(b)
*/
public static final double xnor(double a, double b) {
int A = double2IntBoolean(a);
int B = double2IntBoolean(b);
return XNOR_TRUTH_TABLE[A][B];
}
/**
* Boolean IMP
*
* @param a the a number (a IMP b)
* @param b the b number (a IMP b)
*
* @return Truth table element IMP[A][B]
* where A = double2IntBoolean(a), B = double2IntBoolean(b)
*/
public static final double imp(double a, double b) {
int A = double2IntBoolean(a);
int B = double2IntBoolean(b);
return IMP_TRUTH_TABLE[A][B];
}
/**
* Boolean EQV
*
* @param a the a number (a EQV b)
* @param b the b number (a EQV b)
*
* @return Truth table element EQV[A][B]
* where A = double2IntBoolean(a), B = double2IntBoolean(b)
*/
public static final double eqv(double a, double b) {
int A = double2IntBoolean(a);
int B = double2IntBoolean(b);
return EQV_TRUTH_TABLE[A][B];
}
/**
* Boolean NOT
*
* @param a the a number (NOT a)
*
* @return Truth table element NOT[A]
* where A = double2IntBoolean(a)
*/
public static final double not(double a) {
int A = double2IntBoolean(a);
return NOT_TRUTH_TABLE[A];
}
/**
* Boolean CIMP
*
* @param a the a number (a CIMP b)
* @param b the b number (a CIMP b)
*
* @return Truth table element CIMP[A][B]
* where A = double2IntBoolean(a), B = double2IntBoolean(b)
*/
public static final double cimp(double a, double b) {
int A = double2IntBoolean(a);
int B = double2IntBoolean(b);
return CIMP_TRUTH_TABLE[A][B];
}
/**
* Boolean NIMP
*
* @param a the a number (a NIMP b)
* @param b the b number (a NIMP b)
*
* @return Truth table element NIMP[A][B]
* where A = double2IntBoolean(a), B = double2IntBoolean(b)
*/
public static final double nimp(double a, double b) {
int A = double2IntBoolean(a);
int B = double2IntBoolean(b);
return NIMP_TRUTH_TABLE[A][B];
}
/**
* Boolean CNIMP
*
* @param a the a number (a CNIMP b)
* @param b the b number (a CNIMP b)
*
* @return Truth table element CNIMP[A][B]
* where A = double2IntBoolean(a), B = double2IntBoolean(b)
*/
public static final double cnimp(double a, double b) {
int A = double2IntBoolean(a);
int B = double2IntBoolean(b);
return CNIMP_TRUTH_TABLE[A][B];
}
/**
* Boolean AND variadic
*
* @param values List of values
* @return Returns BooleanAlgebra.TRUE if all values on the list are BooleanAlgebra.TURE,
* otherwise returns BooleanAlgebra.FALSE
*/
public static final double andVariadic(double[] values) {
if (values == null) return Double.NaN;
if (values.length == 0) return Double.NaN;
int cntTrue = 0;
int bv;
for (double v : values) {
bv = double2IntBoolean(v);
if (bv == FALSE) return FALSE;
if (bv == TRUE) cntTrue++;
if (mXparser.isCurrentCalculationCancelled()) return Double.NaN;
}
if (cntTrue == values.length) return TRUE;
else return Double.NaN;
}
/**
* Boolean OR variadic
*
* @param values List of values
* @return Returns BooleanAlgebra.TRUE if at least one value on the list is BooleanAlgebra.TURE,
* otherwise returns BooleanAlgebra.FALSE
*/
public static final double orVariadic(double[] values) {
if (values == null) return Double.NaN;
if (values.length == 0) return Double.NaN;
int cntFalse = 0;
int bv;
for (double v : values) {
bv = double2IntBoolean(v);
if (bv == TRUE) return TRUE;
if (bv == FALSE) cntFalse++;
if (mXparser.isCurrentCalculationCancelled()) return Double.NaN;
}
if (cntFalse == values.length) return FALSE;
else return Double.NaN;
}
/**
* Boolean XOR variadic
*
* @param values List of values
* @return Returns BooleanAlgebra.TRUE if exactly one value on the list is BooleanAlgebra.TURE,
* otherwise returns BooleanAlgebra.FALSE
*/
public static final double xorVariadic(double[] values) {
if (values == null) return Double.NaN;
if (values.length == 0) return Double.NaN;
int cntTrue = 0;
int bv;
for (double v : values) {
bv = double2IntBoolean(v);
if (bv == TRUE) {
cntTrue++;
if (cntTrue > 1) return FALSE;
}
if (bv == NULL) return Double.NaN;
if (mXparser.isCurrentCalculationCancelled()) return Double.NaN;
}
if (cntTrue == 1) return TRUE;
else return FALSE;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy