All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.mariuszgromada.math.mxparser.mathcollection.Calculus Maven / Gradle / Ivy

Go to download

mXparser is a super easy, rich, fast and highly flexible math expression parser library (parser and evaluator of mathematical expressions / formulas provided as plain text / string). Software delivers easy to use API for JAVA, Android and C# .NET/MONO (Common Language Specification compliant: F#, Visual Basic, C++/CLI). *** If you find the software useful donation is something you might consider: https://mathparser.org/donate/ *** Scalar Scientific Calculator, Charts and Scripts, Scalar Lite: https://play.google.com/store/apps/details?id=org.mathparser.scalar.lite *** Scalar Pro: https://play.google.com/store/apps/details?id=org.mathparser.scalar.pro *** ScalarMath.org: https://scalarmath.org/ *** MathSpace.pl: https://mathspace.pl/ ***

There is a newer version: 6.1.0
Show newest version
/*
 * @(#)Calculus.java        4.4.3    2022-05-28
 *
 * MathParser.org-mXparser DUAL LICENSE AGREEMENT as of date 2022-05-22
 * The most up-to-date license is available at the below link:
 * - https://mathparser.org/mxparser-license
 *
 * AUTHOR: Copyright 2010 - 2022 Mariusz Gromada - All rights reserved
 * PUBLISHER: INFIMA - https://payhip.com/infima
 *
 * SOFTWARE means source code and/or binary form and/or documentation.
 * PRODUCT: MathParser.org-mXparser SOFTWARE
 * LICENSE: DUAL LICENSE AGREEMENT
 *
 * BY INSTALLING, COPYING, OR OTHERWISE USING THE PRODUCT, YOU AGREE TO BE
 * BOUND BY ALL OF THE TERMS AND CONDITIONS OF THE DUAL LICENSE AGREEMENT.
 *
 * AUTHOR & PUBLISHER provide the PRODUCT under the DUAL LICENSE AGREEMENT
 * model designed to meet the needs of both non-commercial use as well as
 * commercial use.
 *
 * NON-COMMERCIAL USE means any use or activity where a fee is not charged
 * and the purpose is not the sale of a good or service, and the use or
 * activity is not intended to produce a profit. NON-COMMERCIAL USE examples:
 *
 * 1. Free Open-Source Software ("FOSS").
 * 2. Non-commercial use in research, scholarly and education.
 *
 * COMMERCIAL USE means any use or activity where a fee is charged or the
 * purpose is the sale of a good or service, or the use or activity is
 * intended to produce a profit. COMMERCIAL USE examples:
 *
 * 1. OEMs (Original Equipment Manufacturers).
 * 2. ISVs (Independent Software Vendors).
 * 3. VARs (Value Added Resellers).
 * 4. Other distributors that combine and distribute commercially licensed
 *    software.
 *
 * IN CASE YOU WANT TO USE THE PRODUCT COMMERCIALLY, YOU MUST PURCHASE THE
 * APPROPRIATE LICENSE FROM "INFIMA" ONLINE STORE, STORE ADDRESS:
 *
 * 1. https://mathparser.org/order-commercial-license
 * 2. https://payhip.com/infima
 *
 * NON-COMMERCIAL LICENSE
 *
 * Redistribution and use of the PRODUCT in source and/or binary forms,
 * with or without modification, are permitted provided that the following
 * conditions are met:
 *
 * 1. Redistributions of source code must retain unmodified content of the
 *    entire MathParser.org-mXparser DUAL LICENSE AGREEMENT, including
 *    definition of NON-COMMERCIAL USE, definition of COMMERCIAL USE,
 *    NON-COMMERCIAL LICENSE conditions, COMMERCIAL LICENSE conditions, and
 *    the following DISCLAIMER.
 * 2. Redistributions in binary form must reproduce the entire content of
 *    MathParser.org-mXparser DUAL LICENSE AGREEMENT in the documentation
 *    and/or other materials provided with the distribution, including
 *    definition of NON-COMMERCIAL USE, definition of COMMERCIAL USE,
 *    NON-COMMERCIAL LICENSE conditions, COMMERCIAL LICENSE conditions, and
 *    the following DISCLAIMER.
 *
 * COMMERCIAL LICENSE
 *
 *  1. Before purchasing a commercial license, AUTHOR & PUBLISHER allow you
 *     to download, install and use up to three copies of the PRODUCT to
 *     perform integration tests, confirm the quality of the PRODUCT and
 *     its suitability. The testing period should be limited to fourteen
 *     days. Tests should be performed under the conditions of test
 *     environments. The purpose of the tests must not be to generate profit.
 *  2. Provided that you purchased a license from "INFIMA" online store
 *     (store address: https://mathparser.org/order-commercial-license or
 *     https://payhip.com/infima), and you comply with all below terms and
 *     conditions, and you have acknowledged and understood the following
 *     DISCLAIMER, AUTHOR & PUBLISHER grant you a nonexclusive license
 *     including the following rights:
 *  3. The license has been granted only to you, i.e., the person or entity
 *     that made the purchase, who is identified and confirmed by the data
 *     provided during the purchase.
 *  4. In case you purchased a license in the "ONE-TIME PURCHASE" model,
 *     the license has been granted only for the PRODUCT version specified
 *     in the purchase. The upgrade policy gives you additional rights and
 *     is described in the dedicated section below.
 *  5. In case you purchased a license in the "SUBSCRIPTION" model, you can
 *     install and use any version of the PRODUCT, but only during the
 *     subscription validity period.
 *  6. In case you purchased a "SINGLE LICENSE" you can install and use the
 *     PRODUCT from one workstation.
 *  7. Additional copies of the PRODUCT can be installed and used from more
 *     than one workstation; however, this number is limited to the number
 *     of workstations purchased as per order.
 *  8. In case you purchased a "SITE LICENSE ", the PRODUCT can be installed
 *     and used from all workstations located at your premises.
 *  9. You may incorporate the unmodified PRODUCT into your own products
 *     and software.
 * 10. If you purchased a license with the "SOURCE CODE" option, you may
 *     modify the PRODUCT's source code and incorporate the modified source
 *     code into your own products and/or software.
 * 11. Provided that the license validity period has not expired, you may
 *     distribute your product and/or software with the incorporated
 *     PRODUCT royalty-free.
 * 12. You may make copies of the PRODUCT for backup and archival purposes.
 * 13. AUTHOR & PUBLISHER reserve all rights not expressly granted to you
 *     in this agreement.
 *
 * ADDITIONAL CLARIFICATION ON WORKSTATION
 *
 * A workstation is a device, a remote device, or a virtual device, used by
 * you, your employees, or other entities to whom you have commissioned the
 * tasks. For example, the number of workstations may refer to the number
 * of software developers, engineers, architects, scientists, and other
 * professionals who use the PRODUCT on your behalf. The number of
 * workstations is not the number of copies of your end-product that you
 * distribute to your end-users.
 *
 * By purchasing the COMMERCIAL LICENSE, you only pay for the number of
 * workstations, while the number of copies of your final product
 * (delivered to your end-users) is not limited.
 *
 * UPGRADE POLICY
 *
 * The PRODUCT is versioned according to the following convention:
 *
 *    [MAJOR].[MINOR].[PATCH]
 *
 * 1. COMMERCIAL LICENSE holders can install and use the updated version
 *    for bug fixes free of charge, i.e. if you have purchased a license
 *    for the [MAJOR].[MINOR] version (e.g.: 5.0), you can freely install
 *    all the various releases specified in the [PATCH] version (e.g.: 5.0.2).
 *    The license terms remain unchanged after the update.
 * 2. COMMERCIAL LICENSE holders for [MAJOR].[MINOR] version (e.g.: 5.0)
 *    can install and use the updated version [MAJOR].[MINOR + 1] free of
 *    charge, i.e., plus one release in the [MINOR] range (e.g.: 5.1). The
 *    license terms remain unchanged after the update.
 * 3. COMMERCIAL LICENSE holders who wish to upgrade their version, but are
 *    not eligible for the free upgrade, can claim a discount when
 *    purchasing the upgrade. For this purpose, please contact us via e-mail.
 *
 * DISCLAIMER
 *
 * THIS PRODUCT IS PROVIDED BY AUTHOR & PUBLISHER "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL AUTHOR OR PUBLISHER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS PRODUCT, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 *
 * THE VIEWS AND CONCLUSIONS CONTAINED IN THE PRODUCT AND DOCUMENTATION ARE
 * THOSE OF THE AUTHORS AND SHOULD NOT BE INTERPRETED AS REPRESENTING
 * OFFICIAL POLICIES, EITHER EXPRESSED OR IMPLIED, OF AUTHOR OR PUBLISHER.
 *
 * CONTACT
 *
 * - e-mail: [email protected]
 * - website: https://mathparser.org
 * - source code: https://github.com/mariuszgromada/MathParser.org-mXparser
 * - online store: https://mathparser.org/order-commercial-license
 * - online store: https://payhip.com/infima
 */
package org.mariuszgromada.math.mxparser.mathcollection;

import org.mariuszgromada.math.mxparser.Argument;
import org.mariuszgromada.math.mxparser.Expression;
import org.mariuszgromada.math.mxparser.mXparser;

/**
 * Calculus - numerical integration, differentiation, etc...
 *
 * @author         Mariusz Gromada
* [email protected]
* MathSpace.pl
* MathParser.org - mXparser project page
* mXparser on GitHub
* mXparser on SourceForge
* mXparser on Bitbucket
* mXparser on CodePlex
* Janet Sudoku - project web page
* Janet Sudoku on GitHub
* Janet Sudoku on CodePlex
* Janet Sudoku on SourceForge
* Janet Sudoku on BitBucket
* Scalar Free
* Scalar Pro
* ScalarMath.org
* * @version 4.3.0 */ public final class Calculus { /** * Derivative type specification */ public static final int LEFT_DERIVATIVE = 1; public static final int RIGHT_DERIVATIVE = 2; public static final int GENERAL_DERIVATIVE = 3; /** * Trapezoid numerical integration * * @param f the expression * @param x the argument * @param a form a ... * @param b ... to b * @param eps the epsilon (error) * @param maxSteps the maximum number of steps * * @return Integral value as double. * * @see Expression */ public static final double integralTrapezoid(Expression f, Argument x, double a, double b, double eps, int maxSteps) { double h = 0.5*(b-a); double s = mXparser.getFunctionValue(f, x, a) + mXparser.getFunctionValue(f, x, b) + 2 * mXparser.getFunctionValue(f, x, a + h); double intF = s*h*0.5; double intFprev = 0; double t = a; int i, j; int n = 1; for (i = 1; i <= maxSteps; i++) { n += n; t = a + 0.5*h; intFprev = intF; for (j = 1; j <= n; j++) { if (mXparser.isCurrentCalculationCancelled()) return Double.NaN; s += 2 * mXparser.getFunctionValue(f, x, t); t += h; } h *= 0.5; intF = s*h*0.5; if (Math.abs(intF - intFprev) <= eps) return intF; if (mXparser.isCurrentCalculationCancelled()) return Double.NaN; } return intF; } /** * Numerical derivative at x = x0 * * @param f the expression * @param x the argument * @param x0 at point x = x0 * @param derType derivative type (LEFT_DERIVATIVE, RIGHT_DERIVATIVE, * GENERAL_DERIVATIVE * @param eps the epsilon (error) * @param maxSteps the maximum number of steps * * @return Derivative value as double. * * @see Expression */ public static final double derivative(Expression f, Argument x, double x0, int derType, double eps, int maxSteps) { final double START_DX = 0.1; int step = 0; double error = 2.0*eps; double y0 = 0.0; double derF = 0.0; double derFprev = 0.0; double dx = 0.0; if (derType == LEFT_DERIVATIVE) dx = -START_DX; else dx = START_DX; double dy = 0.0; if ( (derType == LEFT_DERIVATIVE) || (derType == RIGHT_DERIVATIVE) ) { y0 = mXparser.getFunctionValue(f, x, x0); dy = mXparser.getFunctionValue(f, x, x0+dx) - y0; derF = dy/dx; } else derF = ( mXparser.getFunctionValue(f, x, x0+dx) - mXparser.getFunctionValue(f, x, x0-dx) ) / (2.0*dx); do { derFprev = derF; dx = dx/2.0; if ( (derType == LEFT_DERIVATIVE) || (derType == RIGHT_DERIVATIVE) ) { dy = mXparser.getFunctionValue(f, x, x0+dx) - y0; derF = dy/dx; } else derF = ( mXparser.getFunctionValue(f, x, x0+dx) - mXparser.getFunctionValue(f, x, x0-dx) ) / (2.0*dx); error = Math.abs(derF - derFprev); step++; if (mXparser.isCurrentCalculationCancelled()) return Double.NaN; } while ( (step < maxSteps) && ( (error > eps) || Double.isNaN(derF) )); return derF; } /** * Numerical n-th derivative at x = x0 (you should avoid calculation * of derivatives with order higher than 2). * * @param f the expression * @param n the deriviative order * @param x the argument * @param x0 at point x = x0 * @param derType derivative type (LEFT_DERIVATIVE, RIGHT_DERIVATIVE, * GENERAL_DERIVATIVE * @param eps the epsilon (error) * @param maxSteps the maximum number of steps * * @return Derivative value as double. * * @see Expression */ public static final double derivativeNth(Expression f, double n, Argument x, double x0, int derType, double eps, int maxSteps) { n = Math.round(n); int step = 0; double error = 2*eps; double derFprev = 0; double dx = 0.01; double derF = 0; if (derType == RIGHT_DERIVATIVE) for (int i = 1; i <= n; i++) derF += MathFunctions.binomCoeff(-1,n-i) * MathFunctions.binomCoeff(n,i) * mXparser.getFunctionValue(f,x,x0+i*dx); else for (int i = 1; i <= n; i++) derF += MathFunctions.binomCoeff(-1,i)*MathFunctions.binomCoeff(n,i) * mXparser.getFunctionValue(f,x,x0-i*dx); derF = derF / Math.pow(dx, n); do { derFprev = derF; dx = dx/2.0; derF = 0; if (derType == RIGHT_DERIVATIVE) for (int i = 1; i <= n; i++) derF += MathFunctions.binomCoeff(-1,n-i) * MathFunctions.binomCoeff(n,i) * mXparser.getFunctionValue(f,x,x0+i*dx); else for (int i = 1; i <= n; i++) derF += MathFunctions.binomCoeff(-1,i)*MathFunctions.binomCoeff(n,i) * mXparser.getFunctionValue(f,x,x0-i*dx); derF = derF / Math.pow(dx, n); error = Math.abs(derF - derFprev); step++; if (mXparser.isCurrentCalculationCancelled()) return Double.NaN; } while ( (step < maxSteps) && ( (error > eps) || Double.isNaN(derF) )); return derF; } /** * Forward difference(1) operator (at x = x0) * * @param f the expression * @param x the argument name * @param x0 x = x0 * * @return Forward difference(1) value calculated at x0. * * @see Expression * @see Argument */ public static final double forwardDifference(Expression f, Argument x, double x0) { if (Double.isNaN(x0)) return Double.NaN; double xb = x.getArgumentValue(); double delta = mXparser.getFunctionValue(f, x, x0+1) - mXparser.getFunctionValue(f, x, x0); x.setArgumentValue(xb); return delta; } /** * Forward difference(1) operator (at current value of argument x) * * @param f the expression * @param x the argument name * * @return Forward difference(1) value calculated at the current value of argument x. * * @see Expression * @see Argument */ public static final double forwardDifference(Expression f, Argument x) { double xb = x.getArgumentValue(); if (Double.isNaN(xb)) return Double.NaN; double fv = f.calculate(); x.setArgumentValue(xb + 1); double delta = f.calculate() - fv; x.setArgumentValue(xb); return delta; } /** * Backward difference(1) operator (at x = x0). * * @param f the expression * @param x the argument name * @param x0 x = x0 * * @return Backward difference value calculated at x0. * * @see Expression * @see Argument */ public static final double backwardDifference(Expression f, Argument x, double x0) { if (Double.isNaN(x0)) return Double.NaN; double xb = x.getArgumentValue(); double delta = mXparser.getFunctionValue(f, x, x0) - mXparser.getFunctionValue(f, x, x0-1); x.setArgumentValue(xb); return delta; } /** * Backward difference(1) operator (at current value of argument x) * * @param f the expression * @param x the argument name * * @return Backward difference(1) value calculated at the current value of argument x. * * @see Expression * @see Argument */ public static final double backwardDifference(Expression f, Argument x) { double xb = x.getArgumentValue(); if (Double.isNaN(xb)) return Double.NaN; double fv = f.calculate(); x.setArgumentValue(xb - 1); double delta = fv - f.calculate(); x.setArgumentValue(xb); return delta; } /** * Forward difference(h) operator (at x = x0) * * @param f the expression * @param h the difference * @param x the argument name * @param x0 x = x0 * * @return Forward difference(h) value calculated at x0. * * @see Expression * @see Argument */ public static final double forwardDifference(Expression f, double h, Argument x, double x0) { if (Double.isNaN(x0)) return Double.NaN; double xb = x.getArgumentValue(); double delta = mXparser.getFunctionValue(f, x, x0+h) - mXparser.getFunctionValue(f, x, x0); x.setArgumentValue(xb); return delta; } /** * Forward difference(h) operator (at the current value of the argument x) * * @param f the expression * @param h the difference * @param x the argument name * * @return Forward difference(h) value calculated at at the current value of the argument x. * * @see Expression * @see Argument */ public static final double forwardDifference(Expression f, double h, Argument x) { double xb = x.getArgumentValue(); if (Double.isNaN(xb)) return Double.NaN; double fv = f.calculate(); x.setArgumentValue(xb + h); double delta = f.calculate() - fv; x.setArgumentValue(xb); return delta; } /** * Backward difference(h) operator (at x = x0) * * @param f the expression * @param h the difference * @param x the argument name * @param x0 x = x0 * * @return Backward difference(h) value calculated at x0. * * @see Expression * @see Argument */ public static final double backwardDifference(Expression f, double h, Argument x, double x0) { if (Double.isNaN(x0)) return Double.NaN; double xb = x.getArgumentValue(); double delta = mXparser.getFunctionValue(f, x, x0) - mXparser.getFunctionValue(f, x, x0-h); x.setArgumentValue(xb); return delta; } /** * Backward difference(h) operator (at the current value of the argument x) * * @param f the expression * @param h the difference * @param x the argument name * * @return Backward difference(h) value calculated at at the current value of the argument x. * * @see Expression * @see Argument */ public static final double backwardDifference(Expression f, double h, Argument x) { double xb = x.getArgumentValue(); if (Double.isNaN(xb)) return Double.NaN; double fv = f.calculate(); x.setArgumentValue(xb - h); double delta = fv - f.calculate(); x.setArgumentValue(xb); return delta; } /** * Brent solver (Brent root finder) * * @param f Function given in the Expression form * @param x Argument * @param a Left limit * @param b Right limit * @param eps Epsilon value (accuracy) * @param maxSteps Maximum number of iterations * @return Function root - if found, otherwise Double.NaN. */ public static final double solveBrent(Expression f, Argument x, double a, double b, double eps, double maxSteps) { double fa, fb, fc, fs, c, c0, c1, c2; double tmp, d, s; boolean mflag; int iter; /* * If b lower than b then swap */ if (b < a) { tmp = a; a = b; b = tmp; } fa = mXparser.getFunctionValue(f, x, a); fb = mXparser.getFunctionValue(f, x, b); /* * If already root then no need to solve */ if (MathFunctions.abs(fa) <= eps) return a; if (MathFunctions.abs(fb) <= eps) return b; if (b == a) return Double.NaN; /* * If root not bracketed the perform random search */ if (fa * fb > 0) { boolean rndflag = false; double ap, bp; for (int i = 0; i < maxSteps; i++) { ap = ProbabilityDistributions.rndUniformContinuous(a, b); bp = ProbabilityDistributions.rndUniformContinuous(a, b); if (bp < ap) { tmp = ap; ap = bp; bp = tmp; } fa = mXparser.getFunctionValue(f, x, ap); fb = mXparser.getFunctionValue(f, x, bp); if (MathFunctions.abs(fa) <= eps) return ap; if (MathFunctions.abs(fb) <= eps) return bp; if (fa * fb < 0) { rndflag = true; a = ap; b = bp; break; } if (mXparser.isCurrentCalculationCancelled()) return Double.NaN; } if (rndflag == false) return Double.NaN; } c = a; d = c; fc = mXparser.getFunctionValue(f, x, c); if (MathFunctions.abs(fa) < MathFunctions.abs(fb)) { tmp = a; a = b; b = tmp; tmp = fa; fa = fb; fb = tmp; } mflag = true; iter = 0; /* * Perform actual Brent algorithm */ while ((MathFunctions.abs(fb) > eps) && ( MathFunctions.abs(b-a) > eps) && (iter < maxSteps)) { if ( (fa != fc) && (fb != fc) ) { c0 = (a * fb * fc) / ((fa - fb) * (fa - fc)); c1 = (b * fa * fc) / ((fb - fa) * (fb - fc)); c2 = (c * fa * fb) / ((fc - fa) * (fc - fb)); s = c0 + c1 + c2; } else s = b - (fb * (b - a)) / (fb - fa); if ( ( s < (3 * (a + b) / 4) || s > b) || ( (mflag == true) && MathFunctions.abs(s-b) >= (MathFunctions.abs(b-c)/2) ) || ( (mflag == false) && MathFunctions.abs(s-b) >= (MathFunctions.abs(c-d)/2) ) ) { s = (a+b)/2; mflag = true; } else mflag = true; fs = mXparser.getFunctionValue(f, x, s); d = c; c = b; fc = fb; if ((fa * fs) < 0) b = s; else a = s; if (MathFunctions.abs(fa) < MathFunctions.abs(fb)) { tmp = a; a = b; b = tmp; tmp = fa; fa = fb; fb = tmp; } iter++; if (mXparser.isCurrentCalculationCancelled()) return Double.NaN; } return MathFunctions.round(b, MathFunctions.decimalDigitsBefore(eps)-1); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy