All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.mariuszgromada.math.mxparser.mathcollection.ProbabilityDistributions Maven / Gradle / Ivy

Go to download

mXparser is a super easy, rich, fast and highly flexible math expression parser library (parser and evaluator of mathematical expressions / formulas provided as plain text / string). Software delivers easy to use API for JAVA, Android and C# .NET/MONO (Common Language Specification compliant: F#, Visual Basic, C++/CLI). *** If you find the software useful donation is something you might consider: https://mathparser.org/donate/ *** Scalar Scientific Calculator, Charts and Scripts, Scalar Lite: https://play.google.com/store/apps/details?id=org.mathparser.scalar.lite *** Scalar Pro: https://play.google.com/store/apps/details?id=org.mathparser.scalar.pro *** ScalarMath.org: https://scalarmath.org/ *** MathSpace.pl: https://mathspace.pl/ ***

There is a newer version: 6.1.0
Show newest version
/*
 * @(#)ProbabilityDistributions.java        4.4.3    2022-05-28
 *
 * MathParser.org-mXparser DUAL LICENSE AGREEMENT as of date 2022-05-22
 * The most up-to-date license is available at the below link:
 * - https://mathparser.org/mxparser-license
 *
 * AUTHOR: Copyright 2010 - 2022 Mariusz Gromada - All rights reserved
 * PUBLISHER: INFIMA - https://payhip.com/infima
 *
 * SOFTWARE means source code and/or binary form and/or documentation.
 * PRODUCT: MathParser.org-mXparser SOFTWARE
 * LICENSE: DUAL LICENSE AGREEMENT
 *
 * BY INSTALLING, COPYING, OR OTHERWISE USING THE PRODUCT, YOU AGREE TO BE
 * BOUND BY ALL OF THE TERMS AND CONDITIONS OF THE DUAL LICENSE AGREEMENT.
 *
 * AUTHOR & PUBLISHER provide the PRODUCT under the DUAL LICENSE AGREEMENT
 * model designed to meet the needs of both non-commercial use as well as
 * commercial use.
 *
 * NON-COMMERCIAL USE means any use or activity where a fee is not charged
 * and the purpose is not the sale of a good or service, and the use or
 * activity is not intended to produce a profit. NON-COMMERCIAL USE examples:
 *
 * 1. Free Open-Source Software ("FOSS").
 * 2. Non-commercial use in research, scholarly and education.
 *
 * COMMERCIAL USE means any use or activity where a fee is charged or the
 * purpose is the sale of a good or service, or the use or activity is
 * intended to produce a profit. COMMERCIAL USE examples:
 *
 * 1. OEMs (Original Equipment Manufacturers).
 * 2. ISVs (Independent Software Vendors).
 * 3. VARs (Value Added Resellers).
 * 4. Other distributors that combine and distribute commercially licensed
 *    software.
 *
 * IN CASE YOU WANT TO USE THE PRODUCT COMMERCIALLY, YOU MUST PURCHASE THE
 * APPROPRIATE LICENSE FROM "INFIMA" ONLINE STORE, STORE ADDRESS:
 *
 * 1. https://mathparser.org/order-commercial-license
 * 2. https://payhip.com/infima
 *
 * NON-COMMERCIAL LICENSE
 *
 * Redistribution and use of the PRODUCT in source and/or binary forms,
 * with or without modification, are permitted provided that the following
 * conditions are met:
 *
 * 1. Redistributions of source code must retain unmodified content of the
 *    entire MathParser.org-mXparser DUAL LICENSE AGREEMENT, including
 *    definition of NON-COMMERCIAL USE, definition of COMMERCIAL USE,
 *    NON-COMMERCIAL LICENSE conditions, COMMERCIAL LICENSE conditions, and
 *    the following DISCLAIMER.
 * 2. Redistributions in binary form must reproduce the entire content of
 *    MathParser.org-mXparser DUAL LICENSE AGREEMENT in the documentation
 *    and/or other materials provided with the distribution, including
 *    definition of NON-COMMERCIAL USE, definition of COMMERCIAL USE,
 *    NON-COMMERCIAL LICENSE conditions, COMMERCIAL LICENSE conditions, and
 *    the following DISCLAIMER.
 *
 * COMMERCIAL LICENSE
 *
 *  1. Before purchasing a commercial license, AUTHOR & PUBLISHER allow you
 *     to download, install and use up to three copies of the PRODUCT to
 *     perform integration tests, confirm the quality of the PRODUCT and
 *     its suitability. The testing period should be limited to fourteen
 *     days. Tests should be performed under the conditions of test
 *     environments. The purpose of the tests must not be to generate profit.
 *  2. Provided that you purchased a license from "INFIMA" online store
 *     (store address: https://mathparser.org/order-commercial-license or
 *     https://payhip.com/infima), and you comply with all below terms and
 *     conditions, and you have acknowledged and understood the following
 *     DISCLAIMER, AUTHOR & PUBLISHER grant you a nonexclusive license
 *     including the following rights:
 *  3. The license has been granted only to you, i.e., the person or entity
 *     that made the purchase, who is identified and confirmed by the data
 *     provided during the purchase.
 *  4. In case you purchased a license in the "ONE-TIME PURCHASE" model,
 *     the license has been granted only for the PRODUCT version specified
 *     in the purchase. The upgrade policy gives you additional rights and
 *     is described in the dedicated section below.
 *  5. In case you purchased a license in the "SUBSCRIPTION" model, you can
 *     install and use any version of the PRODUCT, but only during the
 *     subscription validity period.
 *  6. In case you purchased a "SINGLE LICENSE" you can install and use the
 *     PRODUCT from one workstation.
 *  7. Additional copies of the PRODUCT can be installed and used from more
 *     than one workstation; however, this number is limited to the number
 *     of workstations purchased as per order.
 *  8. In case you purchased a "SITE LICENSE ", the PRODUCT can be installed
 *     and used from all workstations located at your premises.
 *  9. You may incorporate the unmodified PRODUCT into your own products
 *     and software.
 * 10. If you purchased a license with the "SOURCE CODE" option, you may
 *     modify the PRODUCT's source code and incorporate the modified source
 *     code into your own products and/or software.
 * 11. Provided that the license validity period has not expired, you may
 *     distribute your product and/or software with the incorporated
 *     PRODUCT royalty-free.
 * 12. You may make copies of the PRODUCT for backup and archival purposes.
 * 13. AUTHOR & PUBLISHER reserve all rights not expressly granted to you
 *     in this agreement.
 *
 * ADDITIONAL CLARIFICATION ON WORKSTATION
 *
 * A workstation is a device, a remote device, or a virtual device, used by
 * you, your employees, or other entities to whom you have commissioned the
 * tasks. For example, the number of workstations may refer to the number
 * of software developers, engineers, architects, scientists, and other
 * professionals who use the PRODUCT on your behalf. The number of
 * workstations is not the number of copies of your end-product that you
 * distribute to your end-users.
 *
 * By purchasing the COMMERCIAL LICENSE, you only pay for the number of
 * workstations, while the number of copies of your final product
 * (delivered to your end-users) is not limited.
 *
 * UPGRADE POLICY
 *
 * The PRODUCT is versioned according to the following convention:
 *
 *    [MAJOR].[MINOR].[PATCH]
 *
 * 1. COMMERCIAL LICENSE holders can install and use the updated version
 *    for bug fixes free of charge, i.e. if you have purchased a license
 *    for the [MAJOR].[MINOR] version (e.g.: 5.0), you can freely install
 *    all the various releases specified in the [PATCH] version (e.g.: 5.0.2).
 *    The license terms remain unchanged after the update.
 * 2. COMMERCIAL LICENSE holders for [MAJOR].[MINOR] version (e.g.: 5.0)
 *    can install and use the updated version [MAJOR].[MINOR + 1] free of
 *    charge, i.e., plus one release in the [MINOR] range (e.g.: 5.1). The
 *    license terms remain unchanged after the update.
 * 3. COMMERCIAL LICENSE holders who wish to upgrade their version, but are
 *    not eligible for the free upgrade, can claim a discount when
 *    purchasing the upgrade. For this purpose, please contact us via e-mail.
 *
 * DISCLAIMER
 *
 * THIS PRODUCT IS PROVIDED BY AUTHOR & PUBLISHER "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL AUTHOR OR PUBLISHER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS PRODUCT, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 *
 * THE VIEWS AND CONCLUSIONS CONTAINED IN THE PRODUCT AND DOCUMENTATION ARE
 * THOSE OF THE AUTHORS AND SHOULD NOT BE INTERPRETED AS REPRESENTING
 * OFFICIAL POLICIES, EITHER EXPRESSED OR IMPLIED, OF AUTHOR OR PUBLISHER.
 *
 * CONTACT
 *
 * - e-mail: [email protected]
 * - website: https://mathparser.org
 * - source code: https://github.com/mariuszgromada/MathParser.org-mXparser
 * - online store: https://mathparser.org/order-commercial-license
 * - online store: https://payhip.com/infima
 */
package org.mariuszgromada.math.mxparser.mathcollection;

import java.util.Random;

import org.mariuszgromada.math.mxparser.mXparser;

/**
 * ProbabilityDistributions - random number generators, PDF - Probability Distribution Functions,
 * CDF - Cumulative Distribution Functions, QNT - Quantile Functions (Inverse Cumulative Distribution
 * Functions).
 *
 * @author         Mariusz Gromada
* [email protected]
* MathSpace.pl
* MathParser.org - mXparser project page
* mXparser on GitHub
* mXparser on SourceForge
* mXparser on Bitbucket
* mXparser on CodePlex
* Janet Sudoku - project web page
* Janet Sudoku on GitHub
* Janet Sudoku on CodePlex
* Janet Sudoku on SourceForge
* Janet Sudoku on BitBucket
* Scalar Free
* Scalar Pro
* ScalarMath.org
* * @version 4.3.0 */ public final class ProbabilityDistributions { /** * Random number generator */ public static Random randomGenerator = new Random(); /** * Random number from Uniform Continuous distribution over interval [a, b). * * @param a Interval limit - left / lower. * @param b Interval limit - right / upper. * @param rnd Random number generator. * @return Double.NaN if a or b is null, or b is lower than a - * otherwise returns random number. */ public static final double rndUniformContinuous(double a, double b, Random rnd) { if (Double.isNaN(a)) return Double.NaN; if (Double.isNaN(b)) return Double.NaN; if (b < a) return Double.NaN; if (a == b) return a; double r = a + rnd.nextDouble() * (b - a); return r; } /** * Random number from dUniform Continuous distribution over interval [a, b). * @param a Interval limit - left / lower. * @param b Interval limit - right / upper. * @return Double.NaN if a or b is null, or b is lower than a - * otherwise returns random number. */ public static final double rndUniformContinuous(double a, double b) { return rndUniformContinuous(a, b, randomGenerator); } /** * Random number from Uniform Continuous distribution over interval [0, 1). * * @param rnd Random number generator. * @return Random number. */ public static final double rndUniformContinuous(Random rnd) { return rnd.nextDouble(); } /** * Random number from Uniform Continuous distribution over interval [0, 1). * * @return Random number. */ public static final double randomUniformContinuous() { return rndUniformContinuous(randomGenerator); } /** * PDF - Probability Distribution Function - Uniform Continuous distribution * over interval [a, b). * * @param x Point to evaluate pdf function. * @param a Interval limit - left / lower. * @param b Interval limit - right / upper. * @return Double.NaN if a or b is null, or b is lower than a - * otherwise function value. */ public static final double pdfUniformContinuous(double x, double a, double b) { if (Double.isNaN(x)) return Double.NaN; if (Double.isNaN(a)) return Double.NaN; if (Double.isNaN(b)) return Double.NaN; if (b < a) return Double.NaN; if (a == b) { if (x == a) return 1; else return 0; } if ( (x < a) || (x > b) ) return 0; if (x == Double.NEGATIVE_INFINITY) return 0.0; if (x == Double.POSITIVE_INFINITY) return 0.0; return 1.0 / (b - a); } /** * CDF - Cumulative Distribution Function - Uniform Continuous distribution * over interval [a, b). * * @param x Point to evaluate cdf function. * @param a Interval limit - left / lower. * @param b Interval limit - right / upper. * @return Double.NaN if a or b is null, or b is lower than a - * otherwise function value. */ public static final double cdfUniformContinuous(double x, double a, double b) { if (Double.isNaN(x)) return Double.NaN; if (Double.isNaN(a)) return Double.NaN; if (Double.isNaN(b)) return Double.NaN; if (b < a) return Double.NaN; if (a == b) { if (x < a) return 0.0; else return 1.0; } if (x < a) return 0.0; if (x >= b) return 1.0; if (x == Double.NEGATIVE_INFINITY) return 0.0; if (x == Double.POSITIVE_INFINITY) return 1.0; return (x - a) / (b - a); } /** * QNT - Quantile Function - Uniform Continuous distribution over interval [a, b). * (Inverse of Cumulative Distribution Function). * * @param q Quantile. * @param a Interval limit - left / lower. * @param b Interval limit - right / upper. * @return Double.NaN if a or b is null, or b is lower than a * or q is lower than 0 or q is greater than 1 - * otherwise function value. */ public static final double qntUniformContinuous(double q, double a, double b) { if (Double.isNaN(q)) return Double.NaN; if (Double.isNaN(a)) return Double.NaN; if (Double.isNaN(b)) return Double.NaN; if ( (q < 0.0) || (q > 1.0) ) return Double.NaN; if (b < a) return Double.NaN; if (a == b) { if (q == 1.0) return b; else return Double.NaN; } if (q == 0.0) return a; if (q == 1.0) return b; return a + q*(b-a); } /** * Random number from Uniform Discrete distribution. * over set interval (a, a+1, ..., b-1, b). * * @param a Interval limit - left / lower. * @param b Interval limit - right / upper. * @param rnd Random number generator. * @return Double.NaN if a or b is null, or b is lower than a - * otherwise returns random number. */ public static final double rndInteger(int a, int b, Random rnd) { if (Double.isNaN(a)) return Double.NaN; if (Double.isNaN(b)) return Double.NaN; if (b < a) return Double.NaN; if (a == b) return a; int n = (b - a) + 1; int r = a + rnd.nextInt(n); return r; } /** * Random number from Uniform Discrete distribution. * over set interval (a, a+1, ..., b-1, b). * * @param a Interval limit - left / lower. * @param b Interval limit - right / upper. * @return Double.NaN if a or b is null, or b is lower than a - * otherwise returns random number. */ public static final double rndInteger(int a, int b) { return rndInteger(a, b, randomGenerator); } /** * Random integer. * * @param rnd Random number generator. * @return Returns random number. */ public static final int rndInteger(Random rnd) { return rnd.nextInt(); } /** * Random index from 0 to n-1, * * @param n Bound. * @param rnd Random number generator. * @return if n < 0 returns -1, otherwise random index. */ public static final int rndIndex(int n, Random rnd) { if (n < 0) return -1; return rnd.nextInt(n); } /** * Random index from 0 to n-1, * * @param n Bound. * @return if n < 0 returns -1, otherwise random index. */ public static final int rndIndex(int n) { if (n < 0) return -1; return randomGenerator.nextInt(n); } /** * Random integer. * * @return Double.NaN if a or b is null, or b is lower than a - * otherwise returns random number. */ public static final int rndInteger() { return rndInteger(randomGenerator); } /** * Random number from normal distribution N(mean, stddev). * * @param mean Mean value. * @param stddev Standard deviation. * @param rnd Random number generator. * @return Double.NaN if mean or stddev or rnd is null or stddev is lower than 0 - * otherwise random number. */ public static final double rndNormal(double mean, double stddev, Random rnd) { if (Double.isNaN(mean)) return Double.NaN; if (Double.isNaN(stddev)) return Double.NaN; if (rnd == null) return Double.NaN; if (stddev < 0) return Double.NaN; if (stddev == 0) return mean; double x, a, v1; double b, v2; double r, fac; boolean polarTransform; do { if (mXparser.isCurrentCalculationCancelled()) return Double.NaN; a = rnd.nextDouble(); b = rnd.nextDouble(); v1 = 2.0*a - 1.0; v2 = 2.0*b - 1.0; r = (v1*v1) + (v2*v2); if (r >= 1.0 || r == 0.0) { x = 0.0; polarTransform = false; } else { fac = MathFunctions.sqrt( -2.0 * MathFunctions.ln(r) / r); x = v1*fac; polarTransform = true; } } while (!polarTransform); return mean + (stddev*x); } /** * Random number from normal distribution N(mean, stddev). * * @param mean Mean value. * @param stddev Standard deviation. * @return Double.NaN if mean or stddev is null or stddev is lower than 0 - * otherwise random number. */ public static final double rndNormal(double mean, double stddev) { return rndNormal(mean, stddev, randomGenerator); } /** * PDF - Probability Distribution Function - Normal distribution N(mean, stddev). * * @param x Point to evaluate pdf function. * @param mean Mean value. * @param stddev Standard deviation. * @return Double.NaN if mean or stddev is null or stddev is lower than 0 - * otherwise function value. */ public static final double pdfNormal(double x, double mean, double stddev) { if (Double.isNaN(x)) return Double.NaN; if (Double.isNaN(mean)) return Double.NaN; if (Double.isNaN(stddev)) return Double.NaN; if (stddev < 0) return Double.NaN; if (stddev == 0) { if (x == mean) return 1.0; else return 0; } if (x == Double.NEGATIVE_INFINITY) return 0.0; if (x == Double.POSITIVE_INFINITY) return 0.0; double d = (x - mean) / stddev; return MathFunctions.exp( -0.5*d*d ) / ( MathConstants.SQRT2Pi*stddev ); } /** * CDF - Cumulative Distribution Function - Normal distribution N(mean, stddev). * * @param x Point to evaluate pdf function. * @param mean Mean value. * @param stddev Standard deviation. * @return Double.NaN if mean or stddev is null or stddev is lower than 0 - * otherwise function value. */ public static final double cdfNormal(double x, double mean, double stddev) { if (Double.isNaN(x)) return Double.NaN; if (Double.isNaN(mean)) return Double.NaN; if (Double.isNaN(stddev)) return Double.NaN; if (stddev < 0) return Double.NaN; if (stddev == 0) { if (x < mean) return 0.0; else return 1.0; } if (x == Double.NEGATIVE_INFINITY) return 0.0; if (x == Double.POSITIVE_INFINITY) return 1.0; return 0.5 * SpecialFunctions.erfc( (mean - x) / (stddev * MathConstants.SQRT2)); } /** * QNT - Quantile Function - Normal distribution N(mean, stddev). * (Inverse of Cumulative Distribution Function). * * @param q Quantile. * @param mean Mean value. * @param stddev Standard deviation. * @return Double.NaN if mean or stddev is null or stddev is lower than 0 * or q is lower than 0 or q is greater than 1 - * otherwise function value. */ public static final double qntNormal(double q, double mean, double stddev) { if (Double.isNaN(q)) return Double.NaN; if (Double.isNaN(mean)) return Double.NaN; if (Double.isNaN(stddev)) return Double.NaN; if ( (q < 0.0) || (q > 1.0) ) return Double.NaN; if (stddev < 0) return Double.NaN; if (stddev == 0) { if (q == 1.0) return mean; else return Double.NaN; } if (q == 0.0) return Double.NEGATIVE_INFINITY; if (q == 1.0) return Double.POSITIVE_INFINITY; return mean - ( stddev * MathConstants.SQRT2 * SpecialFunctions.erfcInv( 2.0*q ) ); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy