org.mariuszgromada.math.mxparser.mathcollection.ProbabilityDistributions Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of MathParser.org-mXparser Show documentation
Show all versions of MathParser.org-mXparser Show documentation
mXparser is a super easy, rich, fast and highly flexible math expression parser library (parser and evaluator of mathematical expressions / formulas provided as plain text / string). Software delivers easy to use API for JAVA, Android and C# .NET/MONO (Common Language Specification compliant: F#, Visual Basic, C++/CLI). *** If you find the software useful donation is something you might consider: https://mathparser.org/donate/ *** Scalar Scientific Calculator, Charts and Scripts, Scalar Lite: https://play.google.com/store/apps/details?id=org.mathparser.scalar.lite *** Scalar Pro: https://play.google.com/store/apps/details?id=org.mathparser.scalar.pro *** ScalarMath.org: https://scalarmath.org/ *** MathSpace.pl: https://mathspace.pl/ ***
/*
* @(#)ProbabilityDistributions.java 4.4.3 2022-05-28
*
* MathParser.org-mXparser DUAL LICENSE AGREEMENT as of date 2022-05-22
* The most up-to-date license is available at the below link:
* - https://mathparser.org/mxparser-license
*
* AUTHOR: Copyright 2010 - 2022 Mariusz Gromada - All rights reserved
* PUBLISHER: INFIMA - https://payhip.com/infima
*
* SOFTWARE means source code and/or binary form and/or documentation.
* PRODUCT: MathParser.org-mXparser SOFTWARE
* LICENSE: DUAL LICENSE AGREEMENT
*
* BY INSTALLING, COPYING, OR OTHERWISE USING THE PRODUCT, YOU AGREE TO BE
* BOUND BY ALL OF THE TERMS AND CONDITIONS OF THE DUAL LICENSE AGREEMENT.
*
* AUTHOR & PUBLISHER provide the PRODUCT under the DUAL LICENSE AGREEMENT
* model designed to meet the needs of both non-commercial use as well as
* commercial use.
*
* NON-COMMERCIAL USE means any use or activity where a fee is not charged
* and the purpose is not the sale of a good or service, and the use or
* activity is not intended to produce a profit. NON-COMMERCIAL USE examples:
*
* 1. Free Open-Source Software ("FOSS").
* 2. Non-commercial use in research, scholarly and education.
*
* COMMERCIAL USE means any use or activity where a fee is charged or the
* purpose is the sale of a good or service, or the use or activity is
* intended to produce a profit. COMMERCIAL USE examples:
*
* 1. OEMs (Original Equipment Manufacturers).
* 2. ISVs (Independent Software Vendors).
* 3. VARs (Value Added Resellers).
* 4. Other distributors that combine and distribute commercially licensed
* software.
*
* IN CASE YOU WANT TO USE THE PRODUCT COMMERCIALLY, YOU MUST PURCHASE THE
* APPROPRIATE LICENSE FROM "INFIMA" ONLINE STORE, STORE ADDRESS:
*
* 1. https://mathparser.org/order-commercial-license
* 2. https://payhip.com/infima
*
* NON-COMMERCIAL LICENSE
*
* Redistribution and use of the PRODUCT in source and/or binary forms,
* with or without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain unmodified content of the
* entire MathParser.org-mXparser DUAL LICENSE AGREEMENT, including
* definition of NON-COMMERCIAL USE, definition of COMMERCIAL USE,
* NON-COMMERCIAL LICENSE conditions, COMMERCIAL LICENSE conditions, and
* the following DISCLAIMER.
* 2. Redistributions in binary form must reproduce the entire content of
* MathParser.org-mXparser DUAL LICENSE AGREEMENT in the documentation
* and/or other materials provided with the distribution, including
* definition of NON-COMMERCIAL USE, definition of COMMERCIAL USE,
* NON-COMMERCIAL LICENSE conditions, COMMERCIAL LICENSE conditions, and
* the following DISCLAIMER.
*
* COMMERCIAL LICENSE
*
* 1. Before purchasing a commercial license, AUTHOR & PUBLISHER allow you
* to download, install and use up to three copies of the PRODUCT to
* perform integration tests, confirm the quality of the PRODUCT and
* its suitability. The testing period should be limited to fourteen
* days. Tests should be performed under the conditions of test
* environments. The purpose of the tests must not be to generate profit.
* 2. Provided that you purchased a license from "INFIMA" online store
* (store address: https://mathparser.org/order-commercial-license or
* https://payhip.com/infima), and you comply with all below terms and
* conditions, and you have acknowledged and understood the following
* DISCLAIMER, AUTHOR & PUBLISHER grant you a nonexclusive license
* including the following rights:
* 3. The license has been granted only to you, i.e., the person or entity
* that made the purchase, who is identified and confirmed by the data
* provided during the purchase.
* 4. In case you purchased a license in the "ONE-TIME PURCHASE" model,
* the license has been granted only for the PRODUCT version specified
* in the purchase. The upgrade policy gives you additional rights and
* is described in the dedicated section below.
* 5. In case you purchased a license in the "SUBSCRIPTION" model, you can
* install and use any version of the PRODUCT, but only during the
* subscription validity period.
* 6. In case you purchased a "SINGLE LICENSE" you can install and use the
* PRODUCT from one workstation.
* 7. Additional copies of the PRODUCT can be installed and used from more
* than one workstation; however, this number is limited to the number
* of workstations purchased as per order.
* 8. In case you purchased a "SITE LICENSE ", the PRODUCT can be installed
* and used from all workstations located at your premises.
* 9. You may incorporate the unmodified PRODUCT into your own products
* and software.
* 10. If you purchased a license with the "SOURCE CODE" option, you may
* modify the PRODUCT's source code and incorporate the modified source
* code into your own products and/or software.
* 11. Provided that the license validity period has not expired, you may
* distribute your product and/or software with the incorporated
* PRODUCT royalty-free.
* 12. You may make copies of the PRODUCT for backup and archival purposes.
* 13. AUTHOR & PUBLISHER reserve all rights not expressly granted to you
* in this agreement.
*
* ADDITIONAL CLARIFICATION ON WORKSTATION
*
* A workstation is a device, a remote device, or a virtual device, used by
* you, your employees, or other entities to whom you have commissioned the
* tasks. For example, the number of workstations may refer to the number
* of software developers, engineers, architects, scientists, and other
* professionals who use the PRODUCT on your behalf. The number of
* workstations is not the number of copies of your end-product that you
* distribute to your end-users.
*
* By purchasing the COMMERCIAL LICENSE, you only pay for the number of
* workstations, while the number of copies of your final product
* (delivered to your end-users) is not limited.
*
* UPGRADE POLICY
*
* The PRODUCT is versioned according to the following convention:
*
* [MAJOR].[MINOR].[PATCH]
*
* 1. COMMERCIAL LICENSE holders can install and use the updated version
* for bug fixes free of charge, i.e. if you have purchased a license
* for the [MAJOR].[MINOR] version (e.g.: 5.0), you can freely install
* all the various releases specified in the [PATCH] version (e.g.: 5.0.2).
* The license terms remain unchanged after the update.
* 2. COMMERCIAL LICENSE holders for [MAJOR].[MINOR] version (e.g.: 5.0)
* can install and use the updated version [MAJOR].[MINOR + 1] free of
* charge, i.e., plus one release in the [MINOR] range (e.g.: 5.1). The
* license terms remain unchanged after the update.
* 3. COMMERCIAL LICENSE holders who wish to upgrade their version, but are
* not eligible for the free upgrade, can claim a discount when
* purchasing the upgrade. For this purpose, please contact us via e-mail.
*
* DISCLAIMER
*
* THIS PRODUCT IS PROVIDED BY AUTHOR & PUBLISHER "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL AUTHOR OR PUBLISHER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS PRODUCT, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* THE VIEWS AND CONCLUSIONS CONTAINED IN THE PRODUCT AND DOCUMENTATION ARE
* THOSE OF THE AUTHORS AND SHOULD NOT BE INTERPRETED AS REPRESENTING
* OFFICIAL POLICIES, EITHER EXPRESSED OR IMPLIED, OF AUTHOR OR PUBLISHER.
*
* CONTACT
*
* - e-mail: [email protected]
* - website: https://mathparser.org
* - source code: https://github.com/mariuszgromada/MathParser.org-mXparser
* - online store: https://mathparser.org/order-commercial-license
* - online store: https://payhip.com/infima
*/
package org.mariuszgromada.math.mxparser.mathcollection;
import java.util.Random;
import org.mariuszgromada.math.mxparser.mXparser;
/**
* ProbabilityDistributions - random number generators, PDF - Probability Distribution Functions,
* CDF - Cumulative Distribution Functions, QNT - Quantile Functions (Inverse Cumulative Distribution
* Functions).
*
* @author Mariusz Gromada
* [email protected]
* MathSpace.pl
* MathParser.org - mXparser project page
* mXparser on GitHub
* mXparser on SourceForge
* mXparser on Bitbucket
* mXparser on CodePlex
* Janet Sudoku - project web page
* Janet Sudoku on GitHub
* Janet Sudoku on CodePlex
* Janet Sudoku on SourceForge
* Janet Sudoku on BitBucket
* Scalar Free
* Scalar Pro
* ScalarMath.org
*
* @version 4.3.0
*/
public final class ProbabilityDistributions {
/**
* Random number generator
*/
public static Random randomGenerator = new Random();
/**
* Random number from Uniform Continuous distribution over interval [a, b).
*
* @param a Interval limit - left / lower.
* @param b Interval limit - right / upper.
* @param rnd Random number generator.
* @return Double.NaN if a or b is null, or b is lower than a -
* otherwise returns random number.
*/
public static final double rndUniformContinuous(double a, double b, Random rnd) {
if (Double.isNaN(a)) return Double.NaN;
if (Double.isNaN(b)) return Double.NaN;
if (b < a) return Double.NaN;
if (a == b) return a;
double r = a + rnd.nextDouble() * (b - a);
return r;
}
/**
* Random number from dUniform Continuous distribution over interval [a, b).
* @param a Interval limit - left / lower.
* @param b Interval limit - right / upper.
* @return Double.NaN if a or b is null, or b is lower than a -
* otherwise returns random number.
*/
public static final double rndUniformContinuous(double a, double b) {
return rndUniformContinuous(a, b, randomGenerator);
}
/**
* Random number from Uniform Continuous distribution over interval [0, 1).
*
* @param rnd Random number generator.
* @return Random number.
*/
public static final double rndUniformContinuous(Random rnd) {
return rnd.nextDouble();
}
/**
* Random number from Uniform Continuous distribution over interval [0, 1).
*
* @return Random number.
*/
public static final double randomUniformContinuous() {
return rndUniformContinuous(randomGenerator);
}
/**
* PDF - Probability Distribution Function - Uniform Continuous distribution
* over interval [a, b).
*
* @param x Point to evaluate pdf function.
* @param a Interval limit - left / lower.
* @param b Interval limit - right / upper.
* @return Double.NaN if a or b is null, or b is lower than a -
* otherwise function value.
*/
public static final double pdfUniformContinuous(double x, double a, double b) {
if (Double.isNaN(x)) return Double.NaN;
if (Double.isNaN(a)) return Double.NaN;
if (Double.isNaN(b)) return Double.NaN;
if (b < a) return Double.NaN;
if (a == b) {
if (x == a) return 1;
else return 0;
}
if ( (x < a) || (x > b) ) return 0;
if (x == Double.NEGATIVE_INFINITY) return 0.0;
if (x == Double.POSITIVE_INFINITY) return 0.0;
return 1.0 / (b - a);
}
/**
* CDF - Cumulative Distribution Function - Uniform Continuous distribution
* over interval [a, b).
*
* @param x Point to evaluate cdf function.
* @param a Interval limit - left / lower.
* @param b Interval limit - right / upper.
* @return Double.NaN if a or b is null, or b is lower than a -
* otherwise function value.
*/
public static final double cdfUniformContinuous(double x, double a, double b) {
if (Double.isNaN(x)) return Double.NaN;
if (Double.isNaN(a)) return Double.NaN;
if (Double.isNaN(b)) return Double.NaN;
if (b < a) return Double.NaN;
if (a == b) {
if (x < a) return 0.0;
else return 1.0;
}
if (x < a) return 0.0;
if (x >= b) return 1.0;
if (x == Double.NEGATIVE_INFINITY) return 0.0;
if (x == Double.POSITIVE_INFINITY) return 1.0;
return (x - a) / (b - a);
}
/**
* QNT - Quantile Function - Uniform Continuous distribution over interval [a, b).
* (Inverse of Cumulative Distribution Function).
*
* @param q Quantile.
* @param a Interval limit - left / lower.
* @param b Interval limit - right / upper.
* @return Double.NaN if a or b is null, or b is lower than a
* or q is lower than 0 or q is greater than 1 -
* otherwise function value.
*/
public static final double qntUniformContinuous(double q, double a, double b) {
if (Double.isNaN(q)) return Double.NaN;
if (Double.isNaN(a)) return Double.NaN;
if (Double.isNaN(b)) return Double.NaN;
if ( (q < 0.0) || (q > 1.0) ) return Double.NaN;
if (b < a) return Double.NaN;
if (a == b) {
if (q == 1.0) return b;
else return Double.NaN;
}
if (q == 0.0) return a;
if (q == 1.0) return b;
return a + q*(b-a);
}
/**
* Random number from Uniform Discrete distribution.
* over set interval (a, a+1, ..., b-1, b).
*
* @param a Interval limit - left / lower.
* @param b Interval limit - right / upper.
* @param rnd Random number generator.
* @return Double.NaN if a or b is null, or b is lower than a -
* otherwise returns random number.
*/
public static final double rndInteger(int a, int b, Random rnd) {
if (Double.isNaN(a)) return Double.NaN;
if (Double.isNaN(b)) return Double.NaN;
if (b < a) return Double.NaN;
if (a == b) return a;
int n = (b - a) + 1;
int r = a + rnd.nextInt(n);
return r;
}
/**
* Random number from Uniform Discrete distribution.
* over set interval (a, a+1, ..., b-1, b).
*
* @param a Interval limit - left / lower.
* @param b Interval limit - right / upper.
* @return Double.NaN if a or b is null, or b is lower than a -
* otherwise returns random number.
*/
public static final double rndInteger(int a, int b) {
return rndInteger(a, b, randomGenerator);
}
/**
* Random integer.
*
* @param rnd Random number generator.
* @return Returns random number.
*/
public static final int rndInteger(Random rnd) {
return rnd.nextInt();
}
/**
* Random index from 0 to n-1,
*
* @param n Bound.
* @param rnd Random number generator.
* @return if n < 0 returns -1, otherwise random index.
*/
public static final int rndIndex(int n, Random rnd) {
if (n < 0) return -1;
return rnd.nextInt(n);
}
/**
* Random index from 0 to n-1,
*
* @param n Bound.
* @return if n < 0 returns -1, otherwise random index.
*/
public static final int rndIndex(int n) {
if (n < 0) return -1;
return randomGenerator.nextInt(n);
}
/**
* Random integer.
*
* @return Double.NaN if a or b is null, or b is lower than a -
* otherwise returns random number.
*/
public static final int rndInteger() {
return rndInteger(randomGenerator);
}
/**
* Random number from normal distribution N(mean, stddev).
*
* @param mean Mean value.
* @param stddev Standard deviation.
* @param rnd Random number generator.
* @return Double.NaN if mean or stddev or rnd is null or stddev is lower than 0 -
* otherwise random number.
*/
public static final double rndNormal(double mean, double stddev, Random rnd) {
if (Double.isNaN(mean)) return Double.NaN;
if (Double.isNaN(stddev)) return Double.NaN;
if (rnd == null) return Double.NaN;
if (stddev < 0) return Double.NaN;
if (stddev == 0) return mean;
double x, a, v1;
double b, v2;
double r, fac;
boolean polarTransform;
do {
if (mXparser.isCurrentCalculationCancelled()) return Double.NaN;
a = rnd.nextDouble();
b = rnd.nextDouble();
v1 = 2.0*a - 1.0;
v2 = 2.0*b - 1.0;
r = (v1*v1) + (v2*v2);
if (r >= 1.0 || r == 0.0) {
x = 0.0;
polarTransform = false;
} else {
fac = MathFunctions.sqrt( -2.0 * MathFunctions.ln(r) / r);
x = v1*fac;
polarTransform = true;
}
} while (!polarTransform);
return mean + (stddev*x);
}
/**
* Random number from normal distribution N(mean, stddev).
*
* @param mean Mean value.
* @param stddev Standard deviation.
* @return Double.NaN if mean or stddev is null or stddev is lower than 0 -
* otherwise random number.
*/
public static final double rndNormal(double mean, double stddev) {
return rndNormal(mean, stddev, randomGenerator);
}
/**
* PDF - Probability Distribution Function - Normal distribution N(mean, stddev).
*
* @param x Point to evaluate pdf function.
* @param mean Mean value.
* @param stddev Standard deviation.
* @return Double.NaN if mean or stddev is null or stddev is lower than 0 -
* otherwise function value.
*/
public static final double pdfNormal(double x, double mean, double stddev) {
if (Double.isNaN(x)) return Double.NaN;
if (Double.isNaN(mean)) return Double.NaN;
if (Double.isNaN(stddev)) return Double.NaN;
if (stddev < 0) return Double.NaN;
if (stddev == 0) {
if (x == mean) return 1.0;
else return 0;
}
if (x == Double.NEGATIVE_INFINITY) return 0.0;
if (x == Double.POSITIVE_INFINITY) return 0.0;
double d = (x - mean) / stddev;
return MathFunctions.exp( -0.5*d*d ) / ( MathConstants.SQRT2Pi*stddev );
}
/**
* CDF - Cumulative Distribution Function - Normal distribution N(mean, stddev).
*
* @param x Point to evaluate pdf function.
* @param mean Mean value.
* @param stddev Standard deviation.
* @return Double.NaN if mean or stddev is null or stddev is lower than 0 -
* otherwise function value.
*/
public static final double cdfNormal(double x, double mean, double stddev) {
if (Double.isNaN(x)) return Double.NaN;
if (Double.isNaN(mean)) return Double.NaN;
if (Double.isNaN(stddev)) return Double.NaN;
if (stddev < 0) return Double.NaN;
if (stddev == 0) {
if (x < mean) return 0.0;
else return 1.0;
}
if (x == Double.NEGATIVE_INFINITY) return 0.0;
if (x == Double.POSITIVE_INFINITY) return 1.0;
return 0.5 * SpecialFunctions.erfc( (mean - x) / (stddev * MathConstants.SQRT2));
}
/**
* QNT - Quantile Function - Normal distribution N(mean, stddev).
* (Inverse of Cumulative Distribution Function).
*
* @param q Quantile.
* @param mean Mean value.
* @param stddev Standard deviation.
* @return Double.NaN if mean or stddev is null or stddev is lower than 0
* or q is lower than 0 or q is greater than 1 -
* otherwise function value.
*/
public static final double qntNormal(double q, double mean, double stddev) {
if (Double.isNaN(q)) return Double.NaN;
if (Double.isNaN(mean)) return Double.NaN;
if (Double.isNaN(stddev)) return Double.NaN;
if ( (q < 0.0) || (q > 1.0) ) return Double.NaN;
if (stddev < 0) return Double.NaN;
if (stddev == 0) {
if (q == 1.0) return mean;
else return Double.NaN;
}
if (q == 0.0) return Double.NEGATIVE_INFINITY;
if (q == 1.0) return Double.POSITIVE_INFINITY;
return mean - ( stddev * MathConstants.SQRT2 * SpecialFunctions.erfcInv( 2.0*q ) );
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy