org.mariuszgromada.math.mxparser.mathcollection.Calculus Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of MathParser.org-mXparser Show documentation
Show all versions of MathParser.org-mXparser Show documentation
mXparser is a super easy, rich, fast and highly flexible math expression parser library (parser and evaluator of mathematical expressions / formulas provided as plain text / string). Software delivers easy to use API for JAVA, Android and C# .NET/MONO (Common Language Specification compliant: F#, Visual Basic, C++/CLI). *** If you find the software useful donation or purchase is something you might consider: https://mathparser.org/donate/ *** Online store: https://payhip.com/INFIMA *** Scalar Scientific Calculator, Charts and Scripts, Scalar Lite: https://play.google.com/store/apps/details?id=org.mathparser.scalar.lite *** Scalar Pro: https://play.google.com/store/apps/details?id=org.mathparser.scalar.pro *** ScalarMath.org: https://scalarmath.org/ *** MathSpace.pl: https://mathspace.pl/ ***
/*
* @(#)Calculus.java 6.0.0 2024-05-19
*
* MathParser.org-mXparser DUAL LICENSE AGREEMENT as of date 2024-05-19
* The most up-to-date license is available at the below link:
* - https://mathparser.org/mxparser-license
*
* AUTHOR: Copyright 2010 - 2024 Mariusz Gromada - All rights reserved
* PUBLISHER: INFIMA - https://payhip.com/infima
*
* SOFTWARE means source code and/or binary form and/or documentation.
* PRODUCT: MathParser.org-mXparser SOFTWARE
* LICENSE: DUAL LICENSE AGREEMENT
*
* BY INSTALLING, COPYING, OR OTHERWISE USING THE PRODUCT, YOU AGREE TO BE
* BOUND BY ALL OF THE TERMS AND CONDITIONS OF THE DUAL LICENSE AGREEMENT.
*
* The AUTHOR & PUBLISHER provide the PRODUCT under the DUAL LICENSE AGREEMENT
* model designed to meet the needs of both non-commercial use and commercial
* use.
*
* NON-COMMERCIAL USE means any use or activity where a fee is not charged
* and the purpose is not the sale of a good or service, and the use or
* activity is not intended to produce a profit. Examples of NON-COMMERCIAL USE
* include:
*
* 1. Non-commercial open-source software.
* 2. Non-commercial mobile applications.
* 3. Non-commercial desktop software.
* 4. Non-commercial web applications/solutions.
* 5. Non-commercial use in research, scholarly and educational context.
*
* The above list is non-exhaustive and illustrative only.
*
* COMMERCIAL USE means any use or activity where a fee is charged or the
* purpose is the sale of a good or service, or the use or activity is
* intended to produce a profit. COMMERCIAL USE examples:
*
* 1. OEMs (Original Equipment Manufacturers).
* 2. ISVs (Independent Software Vendors).
* 3. VARs (Value Added Resellers).
* 4. Other distributors that combine and distribute commercially licensed
* software.
*
* The above list is non-exhaustive and illustrative only.
*
* IN CASE YOU WANT TO USE THE PRODUCT COMMERCIALLY, YOU MUST PURCHASE THE
* APPROPRIATE LICENSE FROM "INFIMA" ONLINE STORE, STORE ADDRESS:
*
* 1. https://mathparser.org/order-commercial-license
* 2. https://payhip.com/infima
*
* NON-COMMERCIAL LICENSE
*
* Redistribution and use of the PRODUCT in source and/or binary forms,
* with or without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the unmodified content of
* the entire MathParser.org-mXparser DUAL LICENSE AGREEMENT, including
* the definition of NON-COMMERCIAL USE, the definition of COMMERCIAL USE,
* the NON-COMMERCIAL LICENSE conditions, the COMMERCIAL LICENSE conditions,
* and the following DISCLAIMER.
* 2. Redistributions in binary form must reproduce the entire content of
* MathParser.org-mXparser DUAL LICENSE AGREEMENT in the documentation
* and/or other materials provided with the distribution, including the
* definition of NON-COMMERCIAL USE, the definition of COMMERCIAL USE, the
* NON-COMMERCIAL LICENSE conditions, the COMMERCIAL LICENSE conditions,
* and the following DISCLAIMER.
* 3. Any form of redistribution requires confirmation and signature of
* the NON-COMMERCIAL USE by successfully calling the method:
* License.iConfirmNonCommercialUse(...)
* The method call is used only internally for logging purposes, and
* there is no connection with other external services, and no data is
* sent or collected. The lack of a method call (or its successful call)
* does not affect the operation of the PRODUCT in any way. Please see
* the API documentation.
*
* COMMERCIAL LICENSE
*
* 1. Before purchasing a commercial license, the AUTHOR & PUBLISHER allow
* you to download, install, and use up to three copies of the PRODUCT to
* perform integration tests, confirm the quality of the PRODUCT, and
* its suitability. The testing period should be limited to fourteen
* days. Tests should be performed under the test environments conditions
* and not for profit generation.
* 2. Provided that you purchased a license from "INFIMA" online store
* (store address: https://mathparser.org/order-commercial-license or
* https://payhip.com/infima), and you comply with all terms and
* conditions below, and you have acknowledged and understood the
* following DISCLAIMER, the AUTHOR & PUBLISHER grant you a nonexclusive
* license with the following rights:
* 3. The license is granted only to you, the person or entity that made
* the purchase, identified and confirmed by the data provided during
* the purchase.
* 4. If you purchased a license in the "ONE-TIME PURCHASE" model, the
* license is granted only for the PRODUCT version specified in the
* purchase. The upgrade policy gives you additional rights, described
* in the dedicated section below.
* 5. If you purchased a license in the "SUBSCRIPTION" model, you may
* install and use any version of the PRODUCT during the subscription
* validity period.
* 6. If you purchased a "SINGLE LICENSE" you may install and use the
* PRODUCT on/from one workstation that is located/accessible at/from
* any of your premises.
* 7. Additional copies of the PRODUCT may be installed and used on/from
* more than one workstation, limited to the number of workstations
* purchased per order.
* 8. If you purchased a "SITE LICENSE", the PRODUCT may be installed
* and used on/from all workstations located/accessible at/from any
* of your premises.
* 9. You may incorporate the unmodified PRODUCT into your own products
* and software.
* 10. If you purchased a license with the "SOURCE CODE" option, you may
* modify the PRODUCT's source code and incorporate the modified source
* code into your own products and/or software.
* 11. Provided that the license validity period has not expired, you may
* distribute your product and/or software with the incorporated
* PRODUCT royalty-free.
* 12. You may make copies of the PRODUCT for backup and archival purposes.
* 13. Any form of redistribution requires confirmation and signature of
* the COMMERCIAL USE by successfully calling the method:
* License.iConfirmCommercialUse(...)
* The method call is used only internally for logging purposes, and
* there is no connection with other external services, and no data is
* sent or collected. The lack of a method call (or its successful call)
* does not affect the operation of the PRODUCT in any way. Please see
* the API documentation.
* 14. The AUTHOR & PUBLISHER reserve all rights not expressly granted to
* you in this agreement.
*
* ADDITIONAL CLARIFICATION ON WORKSTATION
*
* A workstation is a device, a remote device, or a virtual device, used by
* you, your employees, or other entities to whom you have commissioned
* tasks. For example, the number of workstations may refer to the number
* of software developers, engineers, architects, scientists, and other
* professionals who use the PRODUCT on your behalf. The number of
* workstations is not the number of copies of your end-product that you
* distribute to your end-users.
*
* By purchasing the COMMERCIAL LICENSE, you only pay for the number of
* workstations, while the number of copies/users of your final product
* (delivered to your end-users) is not limited.
*
* Below are some examples to help you select the right license size:
*
* Example 1: Single Workstation License
* Only one developer works on the development of your application. You do
* not use separate environments for testing, meaning you design, create,
* test, and compile your final application on one environment. In this
* case, you need a license for a single workstation.
*
* Example 2: Up to 5 Workstations License
* Two developers are working on the development of your application.
* Additionally, one tester conducts tests in a separate environment.
* You use three workstations in total, so you need a license for up to
* five workstations.
*
* Example 3: Up to 20 Workstations License
* Ten developers are working on the development of your application.
* Additionally, five testers conduct tests in separate environments.
* You use fifteen workstations in total, so you need a license for
* up to twenty workstations.
*
* Example 4: Site License
* Several dozen developers and testers work on the development of your
* application using multiple environments. You have a large,
* multi-disciplinary team involved in creating your solution. As your team
* is growing and you want to avoid licensing limitations, the best choice
* would be a site license.
*
* UPGRADE POLICY
*
* The PRODUCT is versioned according to the following convention:
*
* [MAJOR].[MINOR].[PATCH]
*
* 1. COMMERCIAL LICENSE holders can install and use the updated version
* for bug fixes free of charge, i.e. if you have purchased a license
* for the [MAJOR].[MINOR] version (e.g., 5.0), you can freely install
* all releases specified in the [PATCH] version (e.g., 5.0.2).
* The license terms remain unchanged after the update.
* 2. COMMERCIAL LICENSE holders for the [MAJOR].[MINOR] version (e.g., 5.0)
* can install and use the updated version [MAJOR].[MINOR + 1] free of
* charge, i.e., plus one release in the [MINOR] range (e.g., 5.1). The
* license terms remain unchanged after the update.
* 3. COMMERCIAL LICENSE holders who wish to upgrade their version, but are
* not eligible for the free upgrade, can claim a discount when
* purchasing the upgrade. For this purpose, please contact us via e-mail.
*
* DISCLAIMER
*
* THIS PRODUCT IS PROVIDED BY THE AUTHOR & PUBLISHER "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL AUTHOR OR PUBLISHER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS PRODUCT, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* THE VIEWS AND CONCLUSIONS CONTAINED IN THE PRODUCT AND DOCUMENTATION ARE
* THOSE OF THE AUTHORS AND SHOULD NOT BE INTERPRETED AS REPRESENTING
* OFFICIAL POLICIES, EITHER EXPRESSED OR IMPLIED, OF THE AUTHOR OR PUBLISHER.
*
* CONTACT
*
* - e-mail: [email protected]
* - website: https://mathparser.org
* - source code: https://github.com/mariuszgromada/MathParser.org-mXparser
* - online store: https://mathparser.org/order-commercial-license
* - online store: https://payhip.com/infima
*/
package org.mariuszgromada.math.mxparser.mathcollection;
import org.mariuszgromada.math.mxparser.Argument;
import org.mariuszgromada.math.mxparser.Expression;
import org.mariuszgromada.math.mxparser.mXparser;
/**
* Calculus - numerical integration, differentiation, etc...
*
* @author Mariusz Gromada
* MathParser.org - mXparser project page
* mXparser on GitHub
* INFIMA place to purchase a commercial MathParser.org-mXparser software license
* [email protected]
* ScalarMath.org - a powerful math engine and math scripting language
* Scalar Lite
* Scalar Pro
* MathSpace.pl
*
* @version 5.2.0
*/
public final class Calculus {
/**
* Derivative type specification
*/
public static final int LEFT_DERIVATIVE = 1;
public static final int RIGHT_DERIVATIVE = 2;
public static final int GENERAL_DERIVATIVE = 3;
/**
* Trapezoid numerical integration
*
* @param f the expression
* @param x the argument
* @param a form a ...
* @param b ... to b
* @param eps the epsilon (error)
* @param maxSteps the maximum number of steps
*
* @return Integral value as double.
*
* @see Expression
*/
public static double integralTrapezoid(Expression f, Argument x, double a, double b,
double eps, int maxSteps) {
double h = 0.5*(b-a);
double s = MathFunctions.getFunctionValue(f, x, a)
+ MathFunctions.getFunctionValue(f, x, b)
+ 2 * MathFunctions.getFunctionValue(f, x, a + h);
double intF = s*h*0.5;
double intFprev = 0;
double t = a;
int i, j;
int n = 1;
for (i = 1; i <= maxSteps; i++) {
n += n;
t = a + 0.5*h;
intFprev = intF;
for (j = 1; j <= n; j++) {
if (mXparser.isCurrentCalculationCancelled()) return Double.NaN;
s += 2 * MathFunctions.getFunctionValue(f, x, t);
t += h;
}
h *= 0.5;
intF = s*h*0.5;
if (Math.abs(intF - intFprev) <= eps)
return intF;
if (mXparser.isCurrentCalculationCancelled()) return Double.NaN;
}
return intF;
}
/**
* Numerical derivative at x = x0
*
* @param f the expression
* @param x the argument
* @param x0 at point x = x0
* @param derType derivative type (LEFT_DERIVATIVE, RIGHT_DERIVATIVE,
* GENERAL_DERIVATIVE
* @param eps the epsilon (error)
* @param maxSteps the maximum number of steps
*
* @return Derivative value as double.
*
* @see Expression
*/
public static double derivative(Expression f, Argument x, double x0,
int derType, double eps, int maxSteps) {
final double START_DX = 0.1;
int step = 0;
double error = 2.0*eps;
double y0 = 0.0;
double derF = 0.0;
double derFprev = 0.0;
double dx = 0.0;
if (derType == LEFT_DERIVATIVE)
dx = -START_DX;
else
dx = START_DX;
double dy = 0.0;
if ( (derType == LEFT_DERIVATIVE) || (derType == RIGHT_DERIVATIVE) ) {
y0 = MathFunctions.getFunctionValue(f, x, x0);
dy = MathFunctions.getFunctionValue(f, x, x0+dx) - y0;
derF = dy/dx;
} else
derF = ( MathFunctions.getFunctionValue(f, x, x0+dx) - MathFunctions.getFunctionValue(f, x, x0-dx) ) / (2.0*dx);
do {
derFprev = derF;
dx = dx/2.0;
if ( (derType == LEFT_DERIVATIVE) || (derType == RIGHT_DERIVATIVE) ) {
dy = MathFunctions.getFunctionValue(f, x, x0+dx) - y0;
derF = dy/dx;
} else
derF = ( MathFunctions.getFunctionValue(f, x, x0+dx) - MathFunctions.getFunctionValue(f, x, x0-dx) ) / (2.0*dx);
error = Math.abs(derF - derFprev);
step++;
if (mXparser.isCurrentCalculationCancelled()) return Double.NaN;
} while ( (step < maxSteps) && ( (error > eps) || Double.isNaN(derF) ));
return derF;
}
/**
* Numerical n-th derivative at x = x0 (you should avoid calculation
* of derivatives with order higher than 2).
*
* @param f the expression
* @param n the deriviative order
* @param x the argument
* @param x0 at point x = x0
* @param derType derivative type (LEFT_DERIVATIVE, RIGHT_DERIVATIVE,
* GENERAL_DERIVATIVE
* @param eps the epsilon (error)
* @param maxSteps the maximum number of steps
*
* @return Derivative value as double.
*
* @see Expression
*/
public static double derivativeNth(Expression f, double n, Argument x,
double x0, int derType, double eps, int maxSteps) {
n = Math.round(n);
int step = 0;
double error = 2*eps;
double derFprev = 0;
double dx = 0.01;
double derF = 0;
if (derType == RIGHT_DERIVATIVE)
for (int i = 1; i <= n; i++)
derF += MathFunctions.binomCoeff(-1,n-i) * MathFunctions.binomCoeff(n,i) * MathFunctions.getFunctionValue(f,x,x0+i*dx);
else
for (int i = 1; i <= n; i++)
derF += MathFunctions.binomCoeff(-1,i)*MathFunctions.binomCoeff(n,i) * MathFunctions.getFunctionValue(f,x,x0-i*dx);
derF = derF / Math.pow(dx, n);
do {
derFprev = derF;
dx = dx/2.0;
derF = 0;
if (derType == RIGHT_DERIVATIVE)
for (int i = 1; i <= n; i++)
derF += MathFunctions.binomCoeff(-1,n-i) * MathFunctions.binomCoeff(n,i) * MathFunctions.getFunctionValue(f,x,x0+i*dx);
else
for (int i = 1; i <= n; i++)
derF += MathFunctions.binomCoeff(-1,i)*MathFunctions.binomCoeff(n,i) * MathFunctions.getFunctionValue(f,x,x0-i*dx);
derF = derF / Math.pow(dx, n);
error = Math.abs(derF - derFprev);
step++;
if (mXparser.isCurrentCalculationCancelled()) return Double.NaN;
} while ( (step < maxSteps) && ( (error > eps) || Double.isNaN(derF) ));
return derF;
}
/**
* Forward difference(1) operator (at x = x0)
*
* @param f the expression
* @param x the argument name
* @param x0 x = x0
*
* @return Forward difference(1) value calculated at x0.
*
* @see Expression
* @see Argument
*/
public static double forwardDifference(Expression f, Argument x, double x0) {
if (Double.isNaN(x0))
return Double.NaN;
double xb = x.getArgumentValue();
double delta = MathFunctions.getFunctionValue(f, x, x0+1) - MathFunctions.getFunctionValue(f, x, x0);
x.setArgumentValue(xb);
return delta;
}
/**
* Forward difference(1) operator (at current value of argument x)
*
* @param f the expression
* @param x the argument name
*
* @return Forward difference(1) value calculated at the current value of argument x.
*
* @see Expression
* @see Argument
*/
public static double forwardDifference(Expression f, Argument x) {
double xb = x.getArgumentValue();
if (Double.isNaN(xb))
return Double.NaN;
double fv = f.calculate();
x.setArgumentValue(xb + 1);
double delta = f.calculate() - fv;
x.setArgumentValue(xb);
return delta;
}
/**
* Backward difference(1) operator (at x = x0).
*
* @param f the expression
* @param x the argument name
* @param x0 x = x0
*
* @return Backward difference value calculated at x0.
*
* @see Expression
* @see Argument
*/
public static double backwardDifference(Expression f, Argument x, double x0) {
if (Double.isNaN(x0))
return Double.NaN;
double xb = x.getArgumentValue();
double delta = MathFunctions.getFunctionValue(f, x, x0) - MathFunctions.getFunctionValue(f, x, x0-1);
x.setArgumentValue(xb);
return delta;
}
/**
* Backward difference(1) operator (at current value of argument x)
*
* @param f the expression
* @param x the argument name
*
* @return Backward difference(1) value calculated at the current value of argument x.
*
* @see Expression
* @see Argument
*/
public static double backwardDifference(Expression f, Argument x) {
double xb = x.getArgumentValue();
if (Double.isNaN(xb))
return Double.NaN;
double fv = f.calculate();
x.setArgumentValue(xb - 1);
double delta = fv - f.calculate();
x.setArgumentValue(xb);
return delta;
}
/**
* Forward difference(h) operator (at x = x0)
*
* @param f the expression
* @param h the difference
* @param x the argument name
* @param x0 x = x0
*
* @return Forward difference(h) value calculated at x0.
*
* @see Expression
* @see Argument
*/
public static double forwardDifference(Expression f, double h, Argument x, double x0) {
if (Double.isNaN(x0))
return Double.NaN;
double xb = x.getArgumentValue();
double delta = MathFunctions.getFunctionValue(f, x, x0+h) - MathFunctions.getFunctionValue(f, x, x0);
x.setArgumentValue(xb);
return delta;
}
/**
* Forward difference(h) operator (at the current value of the argument x)
*
* @param f the expression
* @param h the difference
* @param x the argument name
*
* @return Forward difference(h) value calculated at the current value of the argument x.
*
* @see Expression
* @see Argument
*/
public static double forwardDifference(Expression f, double h, Argument x) {
double xb = x.getArgumentValue();
if (Double.isNaN(xb))
return Double.NaN;
double fv = f.calculate();
x.setArgumentValue(xb + h);
double delta = f.calculate() - fv;
x.setArgumentValue(xb);
return delta;
}
/**
* Backward difference(h) operator (at x = x0)
*
* @param f the expression
* @param h the difference
* @param x the argument name
* @param x0 x = x0
*
* @return Backward difference(h) value calculated at x0.
*
* @see Expression
* @see Argument
*/
public static double backwardDifference(Expression f, double h, Argument x, double x0) {
if (Double.isNaN(x0))
return Double.NaN;
double xb = x.getArgumentValue();
double delta = MathFunctions.getFunctionValue(f, x, x0) - MathFunctions.getFunctionValue(f, x, x0-h);
x.setArgumentValue(xb);
return delta;
}
/**
* Backward difference(h) operator (at the current value of the argument x)
*
* @param f the expression
* @param h the difference
* @param x the argument name
*
* @return Backward difference(h) value calculated at the current value of the argument x.
*
* @see Expression
* @see Argument
*/
public static double backwardDifference(Expression f, double h, Argument x) {
double xb = x.getArgumentValue();
if (Double.isNaN(xb))
return Double.NaN;
double fv = f.calculate();
x.setArgumentValue(xb - h);
double delta = fv - f.calculate();
x.setArgumentValue(xb);
return delta;
}
/**
* Brent solver (Brent root finder)
*
* @param f Function given in the Expression form
* @param x Argument
* @param a Left limit
* @param b Right limit
* @param eps Epsilon value (accuracy)
* @param maxSteps Maximum number of iterations
* @return Function root - if found, otherwise Double.NaN.
*/
public static double solveBrent(Expression f, Argument x, double a, double b, double eps, double maxSteps) {
double fa, fb, fc, fs, c, c0, c1, c2;
double tmp, d, s;
boolean mflag;
int iter;
/*
* If b lower than b then swap
*/
if (b < a) {
tmp = a;
a = b;
b = tmp;
}
fa = MathFunctions.getFunctionValue(f, x, a);
fb = MathFunctions.getFunctionValue(f, x, b);
/*
* If already root then no need to solve
*/
if (MathFunctions.abs(fa) <= eps) return a;
if (MathFunctions.abs(fb) <= eps) return b;
if (b == a) return Double.NaN;
/*
* If root not bracketed the perform random search
*/
if (fa * fb > 0) {
boolean rndflag = false;
double ap, bp;
for (int i = 0; i < maxSteps; i++) {
ap = ProbabilityDistributions.rndUniformContinuous(a, b);
bp = ProbabilityDistributions.rndUniformContinuous(a, b);
if (bp < ap) {
tmp = ap;
ap = bp;
bp = tmp;
}
fa = MathFunctions.getFunctionValue(f, x, ap);
fb = MathFunctions.getFunctionValue(f, x, bp);
if (MathFunctions.abs(fa) <= eps) return ap;
if (MathFunctions.abs(fb) <= eps) return bp;
if (fa * fb < 0) {
rndflag = true;
a = ap;
b = bp;
break;
}
if (mXparser.isCurrentCalculationCancelled()) return Double.NaN;
}
if (!rndflag) return Double.NaN;
}
c = a;
d = c;
fc = MathFunctions.getFunctionValue(f, x, c);
if (MathFunctions.abs(fa) < MathFunctions.abs(fb)) {
tmp = a;
a = b;
b = tmp;
tmp = fa;
fa = fb;
fb = tmp;
}
mflag = true;
iter = 0;
/*
* Perform actual Brent algorithm
*/
while ((MathFunctions.abs(fb) > eps) && ( MathFunctions.abs(b-a) > eps) && (iter < maxSteps)) {
if ( (fa != fc) && (fb != fc) ) {
c0 = (a * fb * fc) / ((fa - fb) * (fa - fc));
c1 = (b * fa * fc) / ((fb - fa) * (fb - fc));
c2 = (c * fa * fb) / ((fc - fa) * (fc - fb));
s = c0 + c1 + c2;
} else
s = b - (fb * (b - a)) / (fb - fa);
if ( ( s < (3 * (a + b) / 4) || s > b) ||
(mflag && MathFunctions.abs(s-b) >= (MathFunctions.abs(b-c)/2) ) ||
(!mflag && MathFunctions.abs(s-b) >= (MathFunctions.abs(c-d)/2) ) ) {
s = (a+b)/2;
mflag = true;
} else
mflag = true;
fs = MathFunctions.getFunctionValue(f, x, s);
d = c;
c = b;
fc = fb;
if ((fa * fs) < 0)
b = s;
else
a = s;
if (MathFunctions.abs(fa) < MathFunctions.abs(fb)) {
tmp = a;
a = b;
b = tmp;
tmp = fa;
fa = fb;
fb = tmp;
}
iter++;
if (mXparser.isCurrentCalculationCancelled()) return Double.NaN;
}
return MathFunctions.round(b, MathFunctions.decimalDigitsBefore(eps)-1);
}
}