org.metacsp.fuzzySymbols.FuzzySymbolicVariableConstraintSolver Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of meta-csp-framework Show documentation
Show all versions of meta-csp-framework Show documentation
A Java API for Meta-CSP based reasoning
/*******************************************************************************
* Copyright (c) 2010-2013 Federico Pecora
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
******************************************************************************/
package org.metacsp.fuzzySymbols;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.Vector;
import org.metacsp.framework.Constraint;
import org.metacsp.framework.ConstraintSolver;
import org.metacsp.framework.Variable;
import org.metacsp.multi.fuzzyActivity.FuzzyActivity;
import org.metacsp.multi.symbols.SymbolicValueConstraint;
/**
* This {@link ConstraintSolver} solves CSPs where variables are fuzzy sets (see
* {@link FuzzySymbolicVariable}) and constraints are equality or inequalities
* among fuzzy sets. Constraints are crisp, and represented by {@link SymbolicValueConstraint}s.
*
* @author Masoumeh Mansouri
*
*/
public class FuzzySymbolicVariableConstraintSolver extends ConstraintSolver {
/**
*
*/
private static final long serialVersionUID = 1380477808694562200L;
private Vector subs = new Vector();
//Progressively increasing IDs for state variables
protected int SVIDs = 0;
private Vector allConPosib = new Vector();
private HashMap orderHash = new HashMap();
private double possibilityDegree = 0.0;
private Vector falseConstraint = new Vector();
//private LinkedHashMap sdTuples = new LinkedHashMap();
//private LinkedHashMap sdTuples = new LinkedHashMap();
public FuzzySymbolicVariableConstraintSolver() {
super(new Class[]{SymbolicValueConstraint.class}, FuzzySymbolicVariable.class);
//this.setOptions(OPTIONS.MANUAL_PROPAGATE);
this.setOptions(OPTIONS.AUTO_PROPAGATE);
this.setOptions(OPTIONS.DOMAINS_MANUALLY_INSTANTIATED);
}
@Override
protected boolean addConstraintsSub(Constraint[] c) {
//this.propagateFuzzyValues(c);
return true;
}
@Override
protected Variable[] createVariablesSub(int num) {
FuzzySymbolicVariable [] ret = new FuzzySymbolicVariable [num];
for (int i = 0; i < num; i++) ret[i] = new FuzzySymbolicVariable (this, SVIDs++);
return ret;
}
public double getUpperBound()
{
if (allConPosib.size() == 0) {
return 1.0;
}
else{
double tmp = Collections.min(allConPosib);
return tmp;
}
}
public double getPosibilityDegree()
{
return possibilityDegree;
}
/*
public LinkedHashMap getLabelings() {
return this.sdTuples;
}
*/
private boolean checkEquality(HashMap a,
HashMap b) {
for(String s: a.keySet()){
if(Double.compare(a.get(s), b.get(s)) != 0)
return false;
}
return true;
}
private boolean CheckTermination(HashMap> var){
boolean isEqual = true;
for(int i = 0; i < this.getVariables().length; i++)
{
if(!checkEquality(((FuzzySymbolicVariable)this.getVariables()[i]).getSymbolsAndPossibilities(), var.get(i))){
HashMap m = new HashMap();
m.putAll(((FuzzySymbolicVariable)this.getVariables()[i]).getSymbolsAndPossibilities());
var.put(i, m);
isEqual = false;
}
}
return isEqual;
}
/*
private boolean CheckTermination(HashMap var){
boolean isEqual = true;
for(int i = 0; i < this.getVariables().length; i++)
{
if(! ((FuzzySymbolicVariable)this.getVariables()[i]).getDomain().equals(var.get(i)) ){
FuzzySymbolicDomain m = new FuzzySymbolicDomain((FuzzySymbolicVariable)this.getVariables()[i], ((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getSymbols(), ((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getPossibilityDegrees());
var.put(i, m);
isEqual = false;
}
}
return isEqual;
}
*/
//fuzzy arc consistency
/*
private void acProppagation(Constraint[] svcArray) {
HashMap var = new HashMap();
for(int i = 0; i < this.getVariables().length; i++){
FuzzySymbolicDomain m = new FuzzySymbolicDomain((FuzzySymbolicVariable)this.getVariables()[i], ((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getSymbols(), ((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getPossibilityDegrees());
var.put(i, m);
}
while(true)
{
for(int i = 0; i < svcArray.length; i++)
{
if (!(svcArray[i] instanceof SymbolicValueConstraint));
else {
SymbolicValueConstraint svc = (SymbolicValueConstraint)svcArray[i];
if(svc.getType().equals(SymbolicValueConstraint.Type.DIFFERENT))
{
allConPosib.add(getSup(svcArray[i], 0, 1));
allConPosib.add(getSup(svcArray[i], 1, 0));
}
if(svc.getType().equals(SymbolicValueConstraint.Type.EQUALS))
allConPosib.add(getInf(svcArray[i]));
}
}
if(CheckTermination(var))
break;
allConPosib.clear();
}
}
*/
private void resetDomains() {
for (Variable var : this.getVariables()) {
FuzzySymbolicVariable fvar = (FuzzySymbolicVariable)var;
fvar.resetDomain();
}
}
private void acPropagation(Constraint[] svcArray) {
HashMap> var = new HashMap>();
// System.out.println(this.getVariables().length);
for(int i = 0; i < this.getVariables().length; i++){
HashMap m = new HashMap();
// System.out.println(((FuzzySymbolicVariable)this.getVariables()[i]));
m.putAll(((FuzzySymbolicVariable)this.getVariables()[i]).getSymbolsAndPossibilities());
var.put(i, m);
}
double infTmp = 0;
boolean notAdded = false;
// Constraint ctemp = null;
allConPosib.clear();
while(true)
{
for(int i = 0; i < svcArray.length; i++)
{
if (!(svcArray[i] instanceof SymbolicValueConstraint));
else {
SymbolicValueConstraint svc = (SymbolicValueConstraint)svcArray[i];
//if(subs != null){
//if we we are interested in propagating a subgraph of this graph
//if(subs.size() > 0){
//if(!isInTheSubGraph(svc.getScope()[0])) continue;
//if(!isInTheSubGraph(svc.getScope()[1])) continue;
//}
if(svc.getType().equals(SymbolicValueConstraint.Type.DIFFERENT)){
if (svcArray.length == 1) {
allConPosib.add(0.0);
}
else {
allConPosib.add(getSup(svcArray[i], 0, 1));
allConPosib.add(getSup(svcArray[i], 1, 0));
}
}
if(svc.getType().equals(SymbolicValueConstraint.Type.EQUALS)){
// allConPosib.add(getInf(svcArray[i]));
// if(hasZeroPossibilities(((FuzzySymbolicDomain)((FuzzySymbolicVariable)svcArray[i].getScope()[0]).getDomain()).getPossibilityDegrees()) &&
// hasZeroPossibilities(((FuzzySymbolicDomain)((FuzzySymbolicVariable)svcArray[i].getScope()[1]).getDomain()).getPossibilityDegrees()))
// notAdded = true;
infTmp = getInf(svcArray[i]);
allConPosib.add(infTmp);
if(Double.compare(infTmp, 0.0) == 0){
if(!isAlreadyMarkedAsFalse(svcArray[i]) && !notAdded){
falseConstraint.add(svcArray[i]);
//System.out.println("falseConstraint: " + falseConstraint);
}
}
notAdded = false;
}
}
//}
}
if(CheckTermination(var))
break;
}
subs.clear();
}
private boolean isAlreadyMarkedAsFalse(Constraint c) {
for (int i = 0; i < falseConstraint.size(); i++) {
if(isAFalseClause(falseConstraint.get(i), c))
return true;
}
return false;
}
private boolean isAFalseClause(Constraint c1, Constraint c2) {
if((c1.getScope()[0].getID() == c2.getScope()[0].getID()) && (c1.getScope()[1].getID() == c2.getScope()[1].getID()))
return true;
if((c1.getScope()[0].getID() == c2.getScope()[1].getID()) && (c1.getScope()[0].getID() == c2.getScope()[1].getID()))
return true;
return false;
}
/*private boolean isInTheSubGraph(Variable varTmp) {
for (int i = 0; i < subs.size(); i++) {
if(subs.get(i).getInternalVariables()[1].getDomain() == varTmp.getDomain() &&
isEqual(((FuzzySymbolicDomain)subs.get(i).getInternalVariables()[1].getDomain()).getPossibilityDegrees(),
((FuzzySymbolicDomain)varTmp.getDomain()).getPossibilityDegrees()))
return true;
}
return false;
}*/
/*private boolean isEqual(double[] t1, double[] t2){
for (int i = 0; i < t2.length; i++) {
if(t1[i] != t2[i]) return false;
}
return true;
}*/
// private boolean hasZeroPossibilities(double[] t1){
// for (int i = 0; i < t1.length; i++) {
// if(Double.compare(t1[i], 0.0) != 0) return false;
// }
// return true;
// }
private boolean isFound(String[] s, String st)
{
String[] t = s;
java.util.Arrays.sort(t);
if (Arrays.binarySearch(t, st) >= 0) return true;
return false;
}
private double getInf(Constraint c){
// SymbolicValueConstraint svc = (SymbolicValueConstraint)c;
Vector psd = new Vector();
Vector intersection = new Vector();
for( String st: ((FuzzySymbolicDomain)((FuzzySymbolicVariable)c.getScope()[0]).getDomain()).getSymbols() ){
if (isFound(((FuzzySymbolicDomain)((FuzzySymbolicVariable)c.getScope()[1]).getDomain()).getSymbols(), st))
{
double minTmp = Math.min(((FuzzySymbolicVariable)c.getScope()[0]).getSymbolsAndPossibilities().get(st), ((FuzzySymbolicVariable)c.getScope()[1]).getSymbolsAndPossibilities().get(st));
((FuzzySymbolicVariable)c.getScope()[0]).getSymbolsAndPossibilities().put(st, minTmp);//To update the value
((FuzzySymbolicVariable)c.getScope()[1]).getSymbolsAndPossibilities().put(st, minTmp);//To update the value
psd.add(minTmp);
intersection.add(new String(st));
}
}
//to update value preferences which are not consistent!
for( String st: ((FuzzySymbolicDomain)((FuzzySymbolicVariable)c.getScope()[0]).getDomain()).getSymbols() )
if (!isFound(intersection.toArray(new String[intersection.size()]), st))
((FuzzySymbolicVariable)c.getScope()[0]).getSymbolsAndPossibilities().put(st, 0.0);//To update the value
for( String st: ((FuzzySymbolicDomain)((FuzzySymbolicVariable)c.getScope()[1]).getDomain()).getSymbols() )
if (!isFound(intersection.toArray(new String[intersection.size()]), st))
((FuzzySymbolicVariable)c.getScope()[1]).getSymbolsAndPossibilities().put(st, 0.0);//To update the value
return Collections.max(psd);
}
private double getSup(Constraint c , int from, int to){
Vector values = new Vector();
Vector tmp = new Vector();
double[] max = new double[((FuzzySymbolicDomain)((FuzzySymbolicVariable)c.getScope()[from]).getDomain()).getSymbols().length];
for(int i = 0; i < ((FuzzySymbolicDomain)((FuzzySymbolicVariable)c.getScope()[from]).getDomain()).getSymbols().length; i++ ){
for(int j = 0; j < ((FuzzySymbolicDomain)((FuzzySymbolicVariable)c.getScope()[to]).getDomain()).getSymbols().length; j++ ){
if( ((FuzzySymbolicDomain)((FuzzySymbolicVariable)c.getScope()[from]).getDomain()).getSymbols()[i] != ((FuzzySymbolicDomain)((FuzzySymbolicVariable)c.getScope()[to]).getDomain()).getSymbols()[j]){
double t = ((FuzzySymbolicVariable)c.getScope()[to]).getSymbolsAndPossibilities().get( ((FuzzySymbolicDomain)((FuzzySymbolicVariable)c.getScope()[to]).getDomain()).getSymbols()[j] );
tmp.add(t);
}
}
max[i] = Collections.max(tmp);
tmp.clear();
}
int i = 0;
for( String st: ((FuzzySymbolicDomain)((FuzzySymbolicVariable)c.getScope()[from]).getDomain()).getSymbols() ){
double t = Math.min(((FuzzySymbolicVariable)c.getScope()[from]).getSymbolsAndPossibilities().get(st), max[i]);
values.add(t);
((FuzzySymbolicVariable)c.getScope()[from]).getSymbolsAndPossibilities().put(st, t);//update the value
i++;
}
return Collections.max(values);
}
private void propagateFuzzyValues(Constraint[] svcArray) {
// int[] orderVar = new int[this.getVariables().length];//counter for generating different state of value for different variable
acPropagation(svcArray);
valueOrdering();//greedy algorithm
/*
for (int i = 0; i < svcArray.length; i++) {
if(svcArray[i].getScope()[1].getID() == 6){
for (int j = 0; j < ((FuzzySymbolicDomain)(svcArray[i].getScope()[0].getDomain())).getPossibilityDegrees().length; j++) {
System.out.println(" " + ((FuzzySymbolicDomain)(svcArray[i].getScope()[0].getDomain())).getPossibilityDegrees()[j] + " ");
}
}
if(svcArray[i].getScope()[0].getID() == 6){
for (int j = 0; j < ((FuzzySymbolicDomain)(svcArray[i].getScope()[1].getDomain())).getPossibilityDegrees().length; j++) {
System.out.println(" " + ((FuzzySymbolicDomain)(svcArray[i].getScope()[1].getDomain())).getPossibilityDegrees()[j] + " ");
}
}
}
*/
/*
while(true)//backtracking
{
Vector valuedegrees = new Vector();
for(int i = 0; i < svcArray.length; i++)
{
SymbolicValueConstraint svc = (SymbolicValueConstraint)svcArray[i];
String fs = ((FuzzySymbolicDomain)(svcArray[i].getScope()[0].getDomain())).getSymbols()[orderHash.get(svcArray[i].getScope()[0])[orderVar[getOrderInVar(svcArray[i].getScope()[0])]]];
String ts = ((FuzzySymbolicDomain)(svcArray[i].getScope()[1].getDomain())).getSymbols()[orderHash.get(svcArray[i].getScope()[1])[orderVar[getOrderInVar(svcArray[i].getScope()[1])]]];
double from = ((FuzzySymbolicVariable)svcArray[i].getScope()[0]).getSymbolsAndPossibilities().get(fs);
double to = ((FuzzySymbolicVariable)svcArray[i].getScope()[1]).getSymbolsAndPossibilities().get(ts);
if(svc.getType().equals(SymbolicValueConstraint.Type.DIFFERENT))
{
if(fs != ts)
valuedegrees.add(Math.min(from, to));
else valuedegrees.add(0.0);
}
if(svc.getType().equals(SymbolicValueConstraint.Type.EQUALS))
{
if(fs == ts)
valuedegrees.add(Math.min(from, to));
else valuedegrees.add(0.0);
}
}
//make feasible tuple
//SymbolicDomain[] sd = new SymbolicDomain[this.getVariables().length];
====
FuzzySymbolicDomain[] sd = new FuzzySymbolicDomain[this.getVariables().length];
if(Double.compare(Collections.min(valuedegrees), 0.0) != 0){
for(int i = 0; i < orderVar.length; i++)
//sd[i] = new SymbolicDomain((FuzzySymbolicVariable)this.getVariables()[i], new String[]{((SymbolicDomain)this.getVariables()[i].getDomain()).getSymbols()[orderHash.get(this.getVariables()[i])[orderVar[i]]]});
sd[i] = new FuzzySymbolicDomain((FuzzySymbolicVariable)this.getVariables()[i], new String[]{((FuzzySymbolicDomain)this.getVariables()[i].getDomain()).getSymbols()[orderHash.get(this.getVariables()[i])[orderVar[i]]]});
sdTuples.put(sd, Collections.min(valuedegrees));
}
====
if(Double.compare(Collections.min(valuedegrees), this.getUpperBound()) == 0){//check if is equal to max number which we get from arc consistency
possibilityDegree = this.getUpperBound();
//break;
}
valuedegrees.clear();
if(IsTerminated(this.getVariables(), orderVar)) //check for reaching all the possible permutation
break;
this.GetNextTuple(orderVar);
} */
}
/*
private void valueOrdering() {
int j = 0;
for(int i = 0; i < this.getVariables().length; i++){
HashMap tempMapUnsorted = new HashMap();
String[] symbols = ((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getSymbols();
double[] possibilities = ((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getPossibilityDegrees();
for (int k = 0; k < symbols.length; k++) tempMapUnsorted.put(symbols[k], possibilities[k]);
//tempMap = SortHashmap(((FuzzySymbolicVariable)this.getVariables()[i]).getSymbolsAndPossibilities());
HashMap tempMap = SortHashmap(tempMapUnsorted);
j = 0;
Integer[] dtod = new Integer[((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getSymbols().length];
for(String s: tempMap.keySet()){
if(Double.compare(tempMap.get(s), 0.0) == 0)
continue;
for(int k = 0; k < ((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getSymbols().length; k++){
if(((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getSymbols()[k] == s){
dtod[j] = k;
break;
}
}
if(j < ((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getSymbols().length - 1)
j++;
}
orderHash.put(this.getVariables()[i], dtod);
}
}
*/
private void valueOrdering() {
int j = 0;
for(int i = 0; i < this.getVariables().length; i++){
HashMap tempMap = new HashMap();
tempMap = sortHashmap(((FuzzySymbolicVariable)this.getVariables()[i]).getSymbolsAndPossibilities());
j = 0;
Integer[] dtod = new Integer[((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getSymbols().length];
for(String s: tempMap.keySet()){
if(Double.compare(tempMap.get(s), 0.0) == 0)
continue;
for(int k = 0; k < ((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getSymbols().length; k++){
if(((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getSymbols()[k] == s){
dtod[j] = k;
break;
}
}
if(j < ((FuzzySymbolicDomain)((FuzzySymbolicVariable)this.getVariables()[i]).getDomain()).getSymbols().length - 1)
j++;
}
orderHash.put(this.getVariables()[i], dtod);
}
}
private LinkedHashMap sortHashmap(HashMap psHashMap) {
HashMap passedMap = new HashMap();
// passedMap = (HashMap) psHashMap.clone();
Comparator comparator = Collections.reverseOrder();
Comparator comparator1 = Collections.reverseOrder();
ArrayList mapKeys = new ArrayList(passedMap.keySet());
ArrayList mapValues = new ArrayList(passedMap.values());
Collections.sort(mapValues, comparator1);
Collections.sort(mapKeys, comparator);
LinkedHashMap sortedMap = new LinkedHashMap();
Iterator valueIt = mapValues.iterator();
while (valueIt.hasNext()) {
Object val = valueIt.next();
Iterator keyIt = mapKeys.iterator();
while (keyIt.hasNext()) {
Object key = keyIt.next();
String comp1 = passedMap.get(key).toString();
String comp2 = val.toString();
if (comp1.equals(comp2)){
passedMap.remove(key);
(mapKeys).remove(key);
sortedMap.put((String)key, (Double)val);
break;
}
}
}
return sortedMap;
}
// private void GetNextTuple(int[] orderVar)
// {
// int index = orderVar.length - 1;
// if(orderVar[index] == (((FuzzySymbolicDomain)this.getVariables()[index].getDomain()).getSymbols().length - 1))
// while(true)
// {
// if(orderVar[index] == (((FuzzySymbolicDomain)getVariables()[index].getDomain()).getSymbols().length - 1))
// {
// orderVar[index] = 0;
// if(index != 0)
// index--;
// else
// break;
// }
// else
// {
// orderVar[index]++;
// break;
// }
// }
// else
// orderVar[index]++;
// }
// private boolean IsTerminated(Variable[] vars, int[] orderVar)
// {
// int sum1 = 0, sum2 = 0;
// for(int i = 0; i < orderVar.length; i++)
// {
// sum1 += ((FuzzySymbolicDomain)vars[i].getDomain()).getSymbols().length - 1;
// sum2 += orderVar[i];
// }
//
// if(sum1 == sum2)
// return true;
// return false;
// }
// private int getOrderInVar(Variable v)
// {
// for(int i = 0; i < this.getVariables().length; i++)
// if(v.equals(this.getVariables()[i]))
// return i;
// return -1;
// }
@Override
public boolean propagate() {
resetDomains();
Constraint[] cons = this.getConstraints();
this.propagateFuzzyValues(cons);
return true;
}
@Override
protected void removeConstraintsSub(Constraint[] c) {
// TODO Auto-generated method stub
}
@Override
protected void removeVariablesSub(Variable[] v) {
// TODO Auto-generated method stub
}
public void setVarOfSubGraph(Vector subs)
{
this.subs = subs;
}
public Vector getFalseConstraint(){
return falseConstraint;
}
public void resetFalseClauses() {
falseConstraint.clear();
}
@Override
public void registerValueChoiceFunctions() {
// TODO Auto-generated method stub
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy