org.metacsp.onLineMonitoring.DomainDescription Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of meta-csp-framework Show documentation
Show all versions of meta-csp-framework Show documentation
A Java API for Meta-CSP based reasoning
/*******************************************************************************
* Copyright (c) 2010-2013 Federico Pecora
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
******************************************************************************/
package org.metacsp.onLineMonitoring;
import java.util.Arrays;
import java.util.Calendar;
import java.util.HashMap;
import java.util.Vector;
import org.metacsp.framework.Constraint;
import org.metacsp.framework.ConstraintNetwork;
import org.metacsp.framework.Variable;
import org.metacsp.fuzzyAllenInterval.FuzzyAllenIntervalConstraint;
import org.metacsp.multi.fuzzyActivity.FuzzyActivity;
import org.metacsp.multi.fuzzyActivity.FuzzyActivityNetworkSolver;
import org.metacsp.multi.fuzzyActivity.SimpleTimeline;
import org.metacsp.multi.symbols.SymbolicValueConstraint;
import org.metacsp.time.Bounds;
import org.metacsp.utility.PermutationsWithRepetition;
public class DomainDescription {
private Rule[] rules;
private FuzzyActivityNetworkSolver solver;
private Vector ongoignActs = new Vector();
private Vector truthMaintenanceConstraints = new Vector();
private long clockStart = -1;
private boolean fastForward = true;
private HashMap timelines = new HashMap();
private Vector fixedHypotheses = new Vector();
private Vector fixedNetworks = new Vector();
// private Vector sensorsNames = new Vector();
// private Vector sensors = new Vector();
private HashMap sensors = new HashMap();
private boolean optimize = false;
private Vector toSkip = new Vector();
//FIXME: Uninitialized read of solver in new onLineMonitoring.DomainDescription(Rule[]) DomainDescription.java /MetaCSPFramework/src/onLineMonitoring line 47 FindBugs Problem (Scariest)
private ConstraintNetwork inferredHypotheses = new ConstraintNetwork(this.solver);
private HypothesisListener hl = null;
private double threshold = -1.0;
private int maxHypotheses = -1;
private boolean stopped = true;
private boolean paused = false;
private long pauseStart = 0;
private long pauseDelta = 0;
private int currentPass = 1;
/*Iran*/
// private Vector> glbHypothesisDepList = new Vector>();
// private Vector> markDepList = new Vector>();
private boolean timelinestate = true;
private Vector firstLayer = new Vector();
private Vector hypNodes = new Vector();
// private int hypCounter = 0;
private Vector groundSensors = new Vector();
private boolean firstCall = false;
private HashMap hnodeshmap = new HashMap();
private Vector crispCons = new Vector();
/*Iran*/
private Vector threads = null;
private Object criticalSection = new Object();
public static enum OPTIONS {SIMULATE_SENSOR_DISPATCH, NO_SENSOR_DISPATCH};
public static enum TIMELINEOPION{MAX_OVERALL_CONSISTENCY, MAX_TEMPORAL_CONSISTENCY, MAX_VALUE_CONSISTENCY}
// private TIMELINEOPION TLO = TIMELINEOPION.MAX_OVERALL_CONSISTENCY;
private class SensorWaitingThread extends Thread {
private FuzzySensorEvent event;
public SensorWaitingThread(FuzzySensorEvent e) {
this.event = e;
threads.add(this);
}
public void run() {
while ((Calendar.getInstance().getTimeInMillis()-(pauseDelta))-clockStart < event.getTime()*1000 || paused) {
if (stopped) break;
try { Thread.sleep(100); }
catch (InterruptedException e) { e.printStackTrace(); }
}
if (!stopped) {
//System.out.println("Fired event: " + event);
updateSensorData(event);
triggerHypothesisListener();
}
}
}
public DomainDescription(Rule... rules) {
solver = new FuzzyActivityNetworkSolver();
this.setRules(rules);
clockStart = Calendar.getInstance().getTimeInMillis();
for (Rule r : rules) {
//MonitoredComponent head = r.getComponent();
//if (timelines.get(head.getName()) == null) timelines.put(head.getName(), new SimpleTimeline(head.getName()));
for (Requirement req : r.getRequirements()) {
req.getSensor().setSolver(solver);
if (!sensors.keySet().contains(req.getSensor().getName())) sensors.put(req.getSensor().getName(), req.getSensor());
if (timelines.get(req.getSensor().getName()) == null) timelines.put(req.getSensor().getName(), new SimpleTimeline(req.getSensor().getName()));
}
}
firstLayer.add(-1);
}
public DomainDescription() {
this(new Rule[0]);
}
public void addRule(Rule r) {
Vector rulesVec = new Vector();
rulesVec.addAll(Arrays.asList(this.rules));
rulesVec.add(r);
this.rules = rulesVec.toArray(new Rule[rulesVec.size()]);
//MonitoredComponent head = r.getComponent();
//if (timelines.get(head.getName()) == null) timelines.put(head.getName(), new SimpleTimeline(head.getName()));
for (Requirement req : r.getRequirements()) {
req.getSensor().setSolver(solver);
if (!sensors.keySet().contains(req.getSensor().getName())) {
sensors.put(req.getSensor().getName(), req.getSensor());
}
if (timelines.get(req.getSensor().getName()) == null) timelines.put(req.getSensor().getName(), new SimpleTimeline(req.getSensor().getName()));
}
}
public void addRules(Rule[] rules) {
this.setRules(rules);
for (Rule r : rules) {
//MonitoredComponent head = r.getComponent();
//if (timelines.get(head.getName()) == null) timelines.put(head.getName(), new SimpleTimeline(head.getName()));
for (Requirement req : r.getRequirements()) {
req.getSensor().setSolver(solver);
if (!sensors.keySet().contains(req.getSensor().getName())) {
sensors.put(req.getSensor().getName(), req.getSensor());
}
if (timelines.get(req.getSensor().getName()) == null) timelines.put(req.getSensor().getName(), new SimpleTimeline(req.getSensor().getName()));
}
}
}
public void startMonitoring() {
stopped = false;
if (!fastForward) threads = new Vector();
clockStart = Calendar.getInstance().getTimeInMillis();
}
public void stopMonitoring() {
stopped = true;
boolean checkStopped = true;
if (!fastForward) {
do {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
for (Thread t : threads) {
if (t.isAlive()) {
checkStopped = false;
//System.out.println(t.getName() + "is Alive!");
}
}
} while (!checkStopped);
}
clockStart = -1;
}
public void pauseMonitoring() {
if (!paused) {
pauseStart = Calendar.getInstance().getTimeInMillis()-pauseDelta;
paused = true;
}
}
public void resumeMonitoring() {
if (paused) {
synchronized(criticalSection) {
pauseDelta = (Calendar.getInstance().getTimeInMillis()-pauseStart);
paused = false;
}
}
}
public long getTime() {
if (paused) return (pauseStart-clockStart)/1000;
return ((Calendar.getInstance().getTimeInMillis()-pauseDelta)-clockStart)/1000;
}
public void setOptions(OPTIONS opt) {
if (opt.equals(OPTIONS.SIMULATE_SENSOR_DISPATCH)) fastForward = false;
else if (opt.equals(OPTIONS.NO_SENSOR_DISPATCH)) fastForward = true;
}
public ConstraintNetwork getConstraintNetwork() {
return solver.getConstraintNetwork();
}
public Hypothesis[] getBestHypotheses(int max) {
Vector ret = new Vector();
Vector bestSet = new Vector();
for (Rule r : this.rules) {
if (!toSkip.contains(r)) {
//System.out.println("rule: " + r);
Hypothesis[] oneRule = getConsistency(r);
if (oneRule != null) {
Arrays.sort(oneRule);
for (int i = 0; i < oneRule.length && i < max; i++) ret.add(oneRule[i]);
/**/
//If there are ghost sensors, update them...
Hypothesis best = ret.elementAt(0);
if (best != null) bestSet.add(best);
/**/
}
}
}
if (!bestSet.isEmpty()) {
for (Hypothesis best : bestSet) {
this.addFuzzyInferredEvents(best);
this.toSkip.add(best.getRule());
}
currentPass++;
this.triggerHypothesisListener();
}
return ret.toArray(new Hypothesis[ret.size()]);
}
public Hypothesis[] getBestHypotheses(double threshold) {
Vector ret = new Vector();
Vector bestSet = new Vector();
for (Rule r : this.rules) {
if (!toSkip.contains(r)) {
Hypothesis[] oneRule = getConsistency(r);
if (oneRule != null) {
Arrays.sort(oneRule);
for (Hypothesis h : oneRule) {
if (h.getOverallConsistency() >= threshold) ret.add(h);
else break;
}
/**/
//If there are ghost sensors, update them...
Hypothesis best = ret.elementAt(0);
if (best != null) bestSet.add(best);
/**/
}
}
}
if (!bestSet.isEmpty()) {
for (Hypothesis best : bestSet) this.addFuzzyInferredEvents(best);
this.triggerHypothesisListener();
}
return ret.toArray(new Hypothesis[ret.size()]);
}
//Make pruned graph from all possible hypotheses and find the maximum path which includes ..
//..the instance of each hypothesis....(it is not necessary the maximum one)
public Hypothesis[] getMaxTimeline() {
Vector ret = new Vector();
Vector bestSet = new Vector();
if(!firstCall){
for (int i = 0; i < this.getVariables().length; i++) {
groundSensors.add((FuzzyActivity)this.getVariables()[i]);
}
firstCall = true;
}
for (Rule r : this.rules) {
if (!toSkip.contains(r)) {
Hypothesis[] oneRule = getConsistency(r);
if (oneRule != null) {
//Arrays.sort(oneRule);
for (int i = 0; i < oneRule.length; i++){
if(oneRule[i].getOverallConsistency() > r.getThreshold()){
ret.add(oneRule[i]);
bestSet.add(oneRule[i]);
}
}
}
}
}
if (!bestSet.isEmpty()) {
for (Hypothesis best : bestSet) {
this.addFuzzyInferredEvents(best);
this.toSkip.add(best.getRule());
}
currentPass++;
this.triggerHypothesisListener();
}
//get best timeline based on the best overall consistency of last layer!
HypothesisNode bestNode = hypNodes.get(hypNodes.size() - 1);
for (int i = hypNodes.size() - 2; i < 0; i--) {
if(hypNodes.get(i).getHyp().getPass() == currentPass){
if(hypNodes.get(i).getSigmaOC() > bestNode.getSigmaOC()){
bestNode = hypNodes.get(i);
}
}
}
/*System.out.println("best node: " + bestNode.toString());
System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
Vector paths = new Vector();
paths = getPathByStartNode(bestNode);
for (int i = 0; i < paths.size(); i++) {
System.out.println(paths.get(i).getHyp());
System.out.println(getMinInterval(paths.get(i).getHyp()));
}
System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
*/ return ret.toArray(new Hypothesis[ret.size()]);
}//iran
//find a path form the last layer of hypothesis(no hypothesis is depend on that) to the first layer(it is just based on sensory event)
// private Vector getPathByStartNode(HypothesisNode hn) {
// Vector tlp = new Vector();
// HashMap marks = new HashMap();
// for (HypothesisNode h: hypNodes) {
// marks.put(h, false);
// }
// Queue q = new LinkedList();
// q.add(hn);
// marks.put(hn, true);
// while(!q.isEmpty()){
// HypothesisNode temp = (HypothesisNode)q.remove();
// for (int i = 0; i < temp.getFuzzyActivity().getDependencies().size(); i++) {
// if(temp.getFuzzyActivity().getDependencies().get(i).IsHypothesis()){
// if(!marks.get(hnodeshmap.get(temp.getFuzzyActivity().getDependencies().get(i)))){
// //mark hypothesis node
// //add to the queue
// marks.put(hnodeshmap.get(temp.getFuzzyActivity().getDependencies().get(i)),true);
// q.add(hnodeshmap.get(temp.getFuzzyActivity().getDependencies().get(i)));
// }
// } }
// marks.put(temp, true);
// tlp.add(temp);
// }
// return tlp;
// }//iran
public void addFuzzyInferredEvents(Hypothesis best) {
Sensor ghostSensor = this.sensors.get("_" + best.getRule().getComponent().getName());
if (ghostSensor != null) {
double[] poss = best.getRule().getPossibilities();
for (int i = 0; i < poss.length; i++) {
if (poss[i] != 0.0) {
poss[i] = best.getOverallConsistency();
}
}
Vector dependencies = new Vector();
//Add "ghost" sensor event with all its dependencies
//this.addFuzzySensorEvents(new FuzzySensorEvent((PhysicalSensor)ghostSensor, poss, this.getMinInterval(best).start));
synchronized(criticalSection) {
FuzzyActivity act = (FuzzyActivity)solver.createVariable(ghostSensor.getName());
act.setDomain(ghostSensor.getStates(), poss);
inferredHypotheses.addVariable(act);
Constraint[] cons = best.getConstraintNetwork().getConstraints();
int hasHead = 0;
for(Constraint con : cons) {
//Variable[] newScope = new Variable[con.getScope().length];
Variable[] oldScope = con.getScope();
if (oldScope[0].equals(best.getHead())){
hasHead++;
}
else{
dependencies.add((FuzzyActivity)oldScope[0]);
}
if(oldScope[1].equals(best.getHead())){
hasHead--;
}
else{
dependencies.add((FuzzyActivity)oldScope[1]);
}
//con.setScope(newScope);
//inferredHypotheses.addConstraint(con);
//SymbolicValueConstraint
if(hasHead == 1){
FuzzyAllenIntervalConstraint contmp = new FuzzyAllenIntervalConstraint(((FuzzyAllenIntervalConstraint)con).getTypes());
contmp.setFrom(act);
contmp.setTo(oldScope[1]);
this.solver.addConstraints(contmp);
inferredHypotheses.addConstraint(contmp);
}
else if(hasHead == -1){
FuzzyAllenIntervalConstraint contmp = new FuzzyAllenIntervalConstraint(((FuzzyAllenIntervalConstraint)con).getTypes());
contmp.setFrom(oldScope[1]);
contmp.setTo(act);
this.solver.addConstraints(contmp);
inferredHypotheses.addConstraint(contmp);
}
hasHead = 0;
}
//this.solver.addConstraints(cons);
//Update the timeline with new info
SimpleTimeline tl = timelines.get(ghostSensor.getName());
tl.addVariable(act);
long start = best.getInterval(timelines).min;
long stop = best.getInterval(timelines).max;
tl.setStart(act, start);
tl.setEnd(act, stop);
act.setIsHypothesis(true);//iran
act.setDependencies(dependencies);
double sigmaTC = best.getTemporalConsistency();
double sigmaVC = best.getValueConsistency();
double sigmaOC = best.getOverallConsistency();
for (int i = 0; i < dependencies.size(); i++) {
if(dependencies.get(i).IsHypothesis()){
sigmaTC += hnodeshmap.get(dependencies.get(i)).getSigmaTC();
sigmaVC += hnodeshmap.get(dependencies.get(i)).getSigmaVC();
sigmaOC += hnodeshmap.get(dependencies.get(i)).getSigmaOC();
}
}
//To store the path
HypothesisNode hn = new HypothesisNode(act, sigmaTC, sigmaVC, sigmaOC, best);
//System.out.println("hn" + hn.toString());
hypNodes.add(hn);
hnodeshmap.put(act, hn);
}
}
}
public void addFuzzySensorEvents(FuzzySensorEvent... events) {
if (!toSkip.isEmpty()) {
toSkip = new Vector();
Constraint[] cons = inferredHypotheses.getConstraints();
Variable[] vars = inferredHypotheses.getVariables();
this.solver.removeConstraints(cons);
this.solver.removeVariables(vars);
inferredHypotheses = new ConstraintNetwork(this.solver);
}
if (!fastForward) for (FuzzySensorEvent e : events) new SensorWaitingThread(e).start();
else {
for (FuzzySensorEvent e : events)
updateSensorData(e);
this.triggerHypothesisListener();
}
}
private void triggerHypothesisListener() {
if (this.hl != null) {
Hypothesis[] hypotheses = null;
if(timelinestate)//iran
{
hypotheses = this.getMaxTimeline();
}
else if (this.threshold != -1.0) {
hypotheses = this.getBestHypotheses(threshold);
}
else if (this.maxHypotheses != -1) {
hypotheses = this.getBestHypotheses(maxHypotheses);
}
if (hypotheses != null) this.hl.processHypotheses(hypotheses);
}
}
private void updateSensorData(FuzzySensorEvent e) {
synchronized(criticalSection) {
//Sensor sensor, double[] possibilities
PhysicalSensor sensor = e.getSensor();
double[] possibilities = e.getPossibilities();
FuzzyActivity oldAct = sensor.getCurrentAct();
boolean firstOnTimeline = false;
if (oldAct == null) firstOnTimeline = true;
//if changed then tcon will be != null
FuzzyAllenIntervalConstraint tcon = sensor.setCurrentPossibilities(possibilities);
//get new activity
FuzzyActivity act = sensor.getCurrentAct();
Vector toRetract = new Vector();
Vector toAdd = new Vector();
if (tcon != null) {
toAdd.add(tcon);
//Update the timeline with new info
SimpleTimeline tl = timelines.get(sensor.getName());
if (oldAct != null) tl.setEnd(oldAct, e.getTime());
tl.addVariable(act);
tl.setStart(act, e.getTime());
//remove old one from ongoing
if (oldAct != null) ongoignActs.remove(oldAct);
ongoignActs.add(act);
}
if (firstOnTimeline) {
//Update the timeline with new info
SimpleTimeline tl = timelines.get(sensor.getName());
tl.addVariable(act);
tl.setStart(act, e.getTime());
ongoignActs.add(act);
}
//add act --{FINISHES v DURING v OVERLAPPEDBY}--> [all ongoing]
for (FuzzyActivity ongoing : ongoignActs) {
if (!ongoing.equals(act)) {
//FuzzyAllenIntervalConstraint fcNew = new FuzzyAllenIntervalConstraint(solver, Type.Finishes);
FuzzyAllenIntervalConstraint fcNew = new FuzzyAllenIntervalConstraint(FuzzyAllenIntervalConstraint.Type.Finishes,
FuzzyAllenIntervalConstraint.Type.During, FuzzyAllenIntervalConstraint.Type.OverlappedBy);
fcNew.setFrom(act);
fcNew.setTo(ongoing);
toAdd.add(fcNew);
truthMaintenanceConstraints.add(fcNew);
}
}
if (tcon != null) {
//For all oldAct --{FINISHES v DURING v OVERLAPPEDBY}--> [all ongoing]
Vector noLongerToMaintain = new Vector();
for (FuzzyAllenIntervalConstraint con : truthMaintenanceConstraints) {
//if oldAct started later than x
//(and since oldAct is now finished and x continues)
//remove oldAct --{FINISHES v DURING v OVERLAPPEDBY}--> x
//add oldAct --DURING--> x
if (con.getFrom().equals(oldAct)) {
toRetract.add(con);
noLongerToMaintain.add(con);
FuzzyAllenIntervalConstraint fcNew = new FuzzyAllenIntervalConstraint(FuzzyAllenIntervalConstraint.Type.During);
fcNew.setFrom(oldAct);
fcNew.setTo(con.getTo());
toAdd.add(fcNew);
}
//if oldAct started earlier than x
//(and since oldAct is now finished and x continues)
//remove x --{FINISHES v DURING v OVERLAPPEDBY}--> oldAct
//(i.e., oldAct --{FINISHEDBY v CONTAINS v OVERLAPS}--> x)
//add oldAct --OVERLAPS--> x
else if (con.getTo().equals(oldAct)) {
toRetract.add(con);
noLongerToMaintain.add(con);
FuzzyAllenIntervalConstraint fcNew = new FuzzyAllenIntervalConstraint(FuzzyAllenIntervalConstraint.Type.Overlaps);
fcNew.setFrom(oldAct);
fcNew.setTo(con.getFrom());
toAdd.add(fcNew);
}
}
for (FuzzyAllenIntervalConstraint con : noLongerToMaintain) truthMaintenanceConstraints.remove(con);
}
if (!toRetract.isEmpty()) { solver.removeConstraints(toRetract.toArray(new FuzzyAllenIntervalConstraint[toRetract.size()])); }
if (!toAdd.isEmpty()) {
crispCons.addAll(toAdd);
solver.addConstraints(toAdd.toArray(new FuzzyAllenIntervalConstraint[toAdd.size()]));
}
}
}
private void setRules(Rule[] rules) {
this.rules = rules;
}
public Rule[] getRules() {
return rules;
}
/**
* Returns temporal and symbolic degrees of satisfaction
* as two elements of a double array.
* @param r The rule to evaluate.
* @return Double array containing temporal and symbolic degrees of satisfaction
* of the given rule.
*/
private Hypothesis[] getConsistency(Rule r) {
synchronized(criticalSection) {
boolean impossibleReq = false;
Vector ret = new Vector();
//OPT
if (optimize) ret.addAll(fixedHypotheses);
MonitoredComponent component = r.getComponent();
//create prototype activity
FuzzyActivity head = (FuzzyActivity)solver.createVariable(component.getName());
head.setDomain(component.getStates(), r.getPossibilities());
//System.out.println("Created HEAD: " + head);
Vector> constraints = new Vector>();
Vector cleanupActs = new Vector();
cleanupActs.add(head);
HashMap> sensorVariables = new HashMap>();
for (Requirement req : r.getRequirements()) {
Sensor sens = req.getSensor();
if (sensorVariables.get(sens) == null) {
Vector vec = new Vector();
Variable[] vars = solver.getVariables(sens.getName());
if (vars != null) {
for (Variable var : vars) vec.add(var);
sensorVariables.put(sens, vec);
}
}
}
Vector dependenciesFzAct = new Vector();//iran and it is required
// Vector dependenciesHyp = new Vector();//iran
Vector marksAsgeneralReq = new Vector();
for (Requirement req : r.getRequirements()) {
Sensor sens = req.getSensor();
//Variable[] sensVars = solver.getVariables(sens.getName());
Vector vec = sensorVariables.get(sens);
if (vec == null) {
impossibleReq = true;
break;
}
Variable[] sensVars = vec.toArray(new Variable[vec.size()]);
//System.out.println("GOT VARS for SENSOR " + sens.getName() + ": " + Arrays.toString(sensVars));
Vector unifications = new Vector();
for (Variable sensVar : sensVars) {
FuzzyActivity sensAct = (FuzzyActivity)sensVar;
ConstraintNetwork oneUnification = new ConstraintNetwork(null);
//make temporal constraint (from: head, to: sensAct)
//of type req.gettCons()
FuzzyAllenIntervalConstraint tcon = new FuzzyAllenIntervalConstraint(req.gettCons());
tcon.setFrom(head);
tcon.setTo(sensAct);
//make value requirement and corresponding valueConstraint (from: head, to: sensAct)
//of type req.getvCons()
FuzzyActivity reqValue = (FuzzyActivity)solver.createVariable(sens.getName());
reqValue.setDomain(sens.getStates(), req.getPossibilities());
//System.out.println("Created REQVALUE: " + reqValue.toString());
SymbolicValueConstraint reqValueCon = new SymbolicValueConstraint(req.getvCons());
reqValueCon.setFrom(reqValue);
reqValueCon.setTo(sensAct);
//iran
//Store the head and req for the further extraction of subgraph from the whole network
if(sensAct.IsHypothesis())
dependenciesFzAct.add(sensAct);
marksAsgeneralReq.add(reqValue);
marksAsgeneralReq.add(head);
//add them to oneUnification
oneUnification.addVariable(head);
oneUnification.addVariable(sensAct);
oneUnification.addConstraint(tcon);
oneUnification.addVariable(reqValue);
oneUnification.addConstraint(reqValueCon);
//make sure we clean up properly afterwards!
cleanupActs.add(reqValue);
//add oneUnification to unifications
unifications.add(oneUnification);
}
constraints.add(unifications);
}
//OPT
Vector newFixedNetworks = null;
if (optimize) newFixedNetworks = new Vector();
if (!impossibleReq) {
Vector toAttempt = new Vector();
int max = 0;
for (Vector vcn : constraints) {
if (vcn.size() > max) max = vcn.size();
}
//Combinatorical c = Combinatorical.getPermutations(constraints.size(), max, true);
PermutationsWithRepetition gen = new PermutationsWithRepetition(max, constraints.size());
for (int[] combination : gen.getVariations()) {
//while (c.hasNext()) {
//int[] combination = c.next();
//System.out.println("Doing " + Arrays.toString(combination));
boolean skip = false;
for (int i = 0; i < combination.length; i++) {
if (constraints.elementAt(i).size() <= combination[i]) {
skip = true;
break;
}
}
if (!skip) {
ConstraintNetwork oneAttempt = new ConstraintNetwork(null);
for (int i = 0; i < combination.length; i++) {
Vector unifs = constraints.elementAt(i);
oneAttempt.join(unifs.elementAt(combination[i]));
}
//OPT
if (optimize) {
ConstraintNetwork filtered = new ConstraintNetwork(null);
for (Variable v : oneAttempt.getVariables()) {
if (sensors.keySet().contains(solver.getComponent(v)) && !cleanupActs.contains(v)) filtered.addVariable(v);
}
if (!fixedNetworks.contains(filtered)) {
toAttempt.add(oneAttempt);
boolean allFixed = true;
for (Variable var : filtered.getVariables()) if (ongoignActs.contains(var)) allFixed = false;
if (allFixed) {
fixedNetworks.add(filtered);
newFixedNetworks.add(oneAttempt);
}
}
//else System.out.println("SKIPPED");
}
else {
toAttempt.add(oneAttempt);
}
}
}
/*
System.out.println("==============");
for (ConstraintNetwork cn : toAttempt) {
System.out.println("MUST ATTEMPT:\n" + cn);
}
System.out.println("==============");
*/
if (toAttempt == null || toAttempt.isEmpty()) {
//solver.removeVariable(cleanupActs.toArray(new FuzzyActivity[cleanupActs.size()]));
for (Variable v : cleanupActs) solver.removeVariable(v);
return null;
}
//System.out.println("----------> ATTEMPTING " + toAttempt.size() + " UNIFICATIONS");
for (ConstraintNetwork cn : toAttempt) {
//iran
//to retrieve ghostActivity from network in order to build dependency vector!
Constraint[] toPropagate = cn.getConstraints();
//iran
Vector marksAsSensReq = new Vector();
if(currentPass > 1){
for (Constraint con : toPropagate) {
extractDependencies(marksAsSensReq, (FuzzyActivity)con.getScope()[0]);
extractDependencies(marksAsSensReq, (FuzzyActivity)con.getScope()[1]);
}
marksAsSensReq.addAll(marksAsgeneralReq);
marksAsSensReq.addAll(groundSensors);
solver.setVarOfSubGraph(marksAsSensReq);
solver.setCrispCons(crispCons.toArray(new Constraint[crispCons.size()]));
}
//iran
/*for (Constraint con : toPropagate) {
System.out.println("TRYING: " + con);
}*/
solver.addConstraints(toPropagate);
marksAsSensReq.clear();//iran
//System.out.println("THE CONSTRIANTS: " + toPropagate.length);
// hypCounter++;
double tc = solver.getTemporalConsistency();
double vc = solver.getValueConsistency();
Hypothesis h = new Hypothesis(tc, vc, cn, r, head, currentPass);
//System.out.println("hypothesis: " + h);
//String outS = " (pass " + h.getPass() + "): " + "\n\tminInterval = " + this.getMinInterval(h);
//System.out.println(outS);
//System.out.println("..........................................................");
ret.add(h);
//OPT
if (optimize && newFixedNetworks.contains(cn)) {
fixedHypotheses.add(h);
//System.out.println("Added fixed " + h);
}
//System.out.println("THE CONSTRIANTS (1): " + toPropagate.length);
solver.removeConstraints(toPropagate);
//iran
}
}
for (Variable v : cleanupActs) solver.removeVariable(v);
if (impossibleReq) return null;
//System.out.println("=====================================================");//iran
return ret.toArray(new Hypothesis[ret.size()]);
}
}
private void extractDependencies(Vector marksAsSensReq,
FuzzyActivity fa) {
if(fa.getDependencies().size() == 0)
return;
if(!marksAsSensReq.contains(fa))
marksAsSensReq.add(fa);
for (int i = 0; i < fa.getDependencies().size(); i++) {
if(!marksAsSensReq.contains(fa.getDependencies().get(i))){
marksAsSensReq.add(fa.getDependencies().get(i));
extractDependencies(marksAsSensReq, fa.getDependencies().get(i));
}
}
}
public void drawNetwork() {
ConstraintNetwork.draw(this.solver.getConstraintNetwork());
}
public SimpleTimeline getTimeline(Sensor s) { return timelines.get(s.getName()); }
public SimpleTimeline[] getTimelines() { return timelines.values().toArray(new SimpleTimeline[timelines.values().size()]); }
public Bounds getMinInterval(Hypothesis h) {
return h.getInterval(timelines);
}
/*
public Interval getMaxInterval(Hypothesis h) {
return h.getMaxInterval(timelines);
}
*/
public void registerHypothesisListener(HypothesisListener hl, double threshold) {
this.hl = hl;
this.threshold = threshold;
this.maxHypotheses = -1;
}
public void registerHypothesisListener(HypothesisListener hl, int maxHypotheses) {
this.hl = hl;
this.threshold = -1.0;
this.maxHypotheses = maxHypotheses;
}
public Variable[] getVariables() {
return this.solver.getVariables();
}
public Constraint[] getConstraints() {
return this.solver.getConstraints();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy