org.metacsp.spatial.geometry.Polygon Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of meta-csp-framework Show documentation
Show all versions of meta-csp-framework Show documentation
A Java API for Meta-CSP based reasoning
package org.metacsp.spatial.geometry;
import java.util.Vector;
import org.metacsp.framework.ConstraintSolver;
import org.metacsp.framework.Domain;
import org.metacsp.framework.Variable;
public class Polygon extends Variable {
private static final long serialVersionUID = 3385252449426376306L;
private Domain dom;
public static final int MAX_POLY_VERTEX_COUNT = 260;
private int vertexCount;
private boolean isMovable = true;
// private Vec2[] vertices = Vec2.arrayOf( MAX_POLY_VERTEX_COUNT );
public Vec2[] normals = Vec2.arrayOf( MAX_POLY_VERTEX_COUNT );
public Mat2 u = new Mat2();
private Vec2 position = new Vec2();
public boolean ref = false;
public boolean incident = false;
private boolean hasDefaultDomain = true;
private float orientation;
protected Polygon(ConstraintSolver cs, int id) {
super(cs, id);
this.setInitialDomain();
}
/**
* Returns whether or not the domain of this {@link Polygon} has been refined.
* @return true
iff the domain of this {@link Polygon} has been refined.
*/
public boolean hasDefaultDomain() {
return hasDefaultDomain;
}
/**
* Set whether this {@link Polygon} is movable.
* @param isMovable Whether this {@link Polygon} is movable.
*/
public void setMovable(boolean isMovable){
this.isMovable = isMovable;
}
/**
* Query whether this {@link Polygon} is movable.
* @return true
iff this {@link Polygon} is movable.
*/
public boolean isMovable(){
return this.isMovable;
}
/**
* Get number of vertices in this {@link Polygon}.
* @return The number of vertices in this {@link Polygon}.
*/
public int getVertexCount(){
return vertexCount;
}
@Override
public int compareTo(Variable arg0) {
// TODO Auto-generated method stub
return 0;
}
@Override
public Domain getDomain() {
// TODO Auto-generated method stub
return dom;
}
@Override
public void setDomain(Domain d) {
}
/**
* Set the domain of this {@link Polygon}, its vertices.
* @param verts The vertices of this {@link Polygon}.
*/
public void setDomain(Vec2 ... verts){
dom = new Vertex(this);
vertexCount = verts.length;
this.setOrient(0.0f);
getPosition().set( getCentroid(orderVertex(verts)).x, getCentroid(orderVertex(verts)).y );
Vec2[] halfPoly = new Vec2[verts.length];
for (int i = 0; i < verts.length; i++) {
halfPoly[i] = new Vec2(verts[i].x - getPosition().x, verts[i].y - getPosition().y);
}
set( halfPoly );
initialize();
hasDefaultDomain = false;
}
private void setInitialDomain() {
Vec2 p1 = new Vec2(GeometricConstraintSolver.MIN_X,GeometricConstraintSolver.MAX_Y);
Vec2 p2 = new Vec2(GeometricConstraintSolver.MAX_X,GeometricConstraintSolver.MAX_Y);
Vec2 p3 = new Vec2(GeometricConstraintSolver.MAX_X,GeometricConstraintSolver.MIN_Y);
Vec2 p4 = new Vec2(GeometricConstraintSolver.MIN_X,GeometricConstraintSolver.MIN_Y);
this.setDomain(p1,p2,p3,p4);
hasDefaultDomain = true;
}
@Override
public String toString() {
String ret = this.getClass().getSimpleName() + " " + this.id;
Vertex dom = (Vertex)this.getDomain();
for (int i = 0; i < vertexCount; i++) ret += (" " + dom.getVertices()[i]);
return ret;
}
private void initialize()
{
computeMass( 1.0f );
}
private void computeMass( float density )
{
// Calculate centroid and moment of inertia
float area = 0.0f;
float I = 0.0f;
final float k_inv3 = 1.0f / 3.0f;
Vec2 c = new Vec2( 0.0f, 0.0f ); // centroid;
for (int i = 0; i < vertexCount; ++i)
{
// Triangle vertices, third vertex implied as (0, 0)
Vec2 p1 = ((Vertex)this.dom).getVertices()[i];
Vec2 p2 = ((Vertex)this.dom).getVertices()[(i + 1) % vertexCount];
float D = Vec2.cross( p1, p2 );
float triangleArea = 0.5f * D;
area += triangleArea;
// Use area to weight the centroid average, not just vertex position
float weight = triangleArea * k_inv3;
c.addsi( p1, weight );
c.addsi( p2, weight );
float intx2 = p1.x * p1.x + p2.x * p1.x + p2.x * p2.x;
float inty2 = p1.y * p1.y + p2.y * p1.y + p2.y * p2.y;
I += (0.25f * k_inv3 * D) * (intx2 + inty2);
}
c.muli( 1.0f / area );
// Translate vertices to centroid (make the centroid (0, 0)
// for the polygon in model space)
// Not really necessary, but I like doing this anyway
for (int i = 0; i < vertexCount; ++i)
{
((Vertex)this.dom).getVertices()[i].subi( c );
}
// this.mass = density * area;
// this.invMass = (this.mass != 0.0f) ? 1.0f / this.mass : 0.0f;
// this.inertia = I * density;
// this.invInertia = (this.inertia != 0.0f) ? 1.0f / this.inertia : 0.0f;
}
private Vec2 getCentroid(Vec2 ...vers)
{
// Calculate centroid and moment of inertia
Vec2[] verticesCopy = new Vec2[vers.length];
for (int i = 0; i < vers.length; i++) {
verticesCopy[i] = new Vec2(vers[i].x, vers[i].y);
}
float area = 0.0f;
float I = 0.0f;
final float k_inv3 = 1.0f / 3.0f;
Vec2 c = new Vec2( 0.0f, 0.0f ); // centroid;
for (int i = 0; i < vertexCount; ++i)
{
// Triangle vertices, third vertex implied as (0, 0)
Vec2 p1 = verticesCopy[i];
Vec2 p2 = verticesCopy[(i + 1) % vertexCount];
float D = Vec2.cross( p1, p2 );
float triangleArea = 0.5f * D;
area += triangleArea;
// Use area to weight the centroid average, not just vertex position
float weight = triangleArea * k_inv3;
c.addsi( p1, weight );
c.addsi( p2, weight );
float intx2 = p1.x * p1.x + p2.x * p1.x + p2.x * p2.x;
float inty2 = p1.y * p1.y + p2.y * p1.y + p2.y * p2.y;
I += (0.25f * k_inv3 * D) * (intx2 + inty2);
}
c.muli( 1.0f / area );
// Translate vertices to centroid (make the centroid (0, 0)
// for the polygon in model space)
// Not really necessary, but I like doing this anyway
for (int i = 0; i < vertexCount; ++i)
{
verticesCopy[i].subi( c );
}
return c;
}
/**
* Get the orientation of this polygon (in radians).
* @return The orientation of this polygon (in radians).
*/
public float getOrientation() {
return orientation;
}
/**
* Set the orientation of this polygon (in radians).
* @param or The orientation of this polygon (in radians).
*/
public void setOrientation(float or) {
this.orientation = or;
}
private void setOrient( float radians )
{
u.set( radians );
}
private void setBox( float hw, float hh )
{
Vec2[] vertices = Vec2.arrayOf( MAX_POLY_VERTEX_COUNT );
vertexCount = 4;
vertices[0].set( -hw, -hh );
vertices[1].set( hw, -hh );
vertices[2].set( hw, hh );
vertices[3].set( -hw, hh );
((Vertex)this.dom).setVertices(vertices);
normals[0].set( 0.0f, -1.0f );
normals[1].set( 1.0f, 0.0f );
normals[2].set( 0.0f, 1.0f );
normals[3].set( -1.0f, 0.0f );
}
private Vec2[] orderVertex(Vec2 ...verts){
Vec2[] vertices = Vec2.arrayOf( MAX_POLY_VERTEX_COUNT );
Vec2[] verticesCopy = new Vec2[verts.length];
for (int i = 0; i < verts.length; i++) {
verticesCopy[i] = new Vec2(verts[i].x, verts[i].y);
}
int rightMost = 0;
float highestXCoord = verticesCopy[0].x;
for (int i = 1; i < verticesCopy.length; ++i)
{
float x = verticesCopy[i].x;
if (x > highestXCoord)
{
highestXCoord = x;
rightMost = i;
}
// If matching x then take farthest negative y
else if (x == highestXCoord)
{
if (verticesCopy[i].y < verticesCopy[rightMost].y)
{
rightMost = i;
}
}
}
int[] hull = new int[MAX_POLY_VERTEX_COUNT];
int outCount = 0;
int indexHull = rightMost;
for (;;)
{
hull[outCount] = indexHull;
// Search for next index that wraps around the hull
// by computing cross products to find the most counter-clockwise
// vertex in the set, given the previos hull index
int nextHullIndex = 0;
for (int i = 1; i < verticesCopy.length; ++i)
{
// Skip if same coordinate as we need three unique
// points in the set to perform a cross product
if (nextHullIndex == indexHull)
{
nextHullIndex = i;
continue;
}
// Cross every set of three unique vertices
// Record each counter clockwise third vertex and add
// to the output hull
// See : http://www.oocities.org/pcgpe/math2d.html
Vec2 e1 = verticesCopy[nextHullIndex].sub( verticesCopy[hull[outCount]] );
Vec2 e2 = verticesCopy[i].sub( verticesCopy[hull[outCount]] );
float c = Vec2.cross( e1, e2 );
if (c < 0.0f)
{
nextHullIndex = i;
}
// Cross product is zero then e vectors are on same line
// therefore want to record vertex farthest along that line
if (c == 0.0f && e2.lengthSq() > e1.lengthSq())
{
nextHullIndex = i;
}
}
++outCount;
indexHull = nextHullIndex;
// Conclude algorithm upon wrap-around
if (nextHullIndex == rightMost)
{
vertexCount = outCount;
break;
}
}
// Copy vertices into shape's vertices
for (int i = 0; i < vertexCount; ++i)
{
vertices[i].set( verticesCopy[hull[i]] );
}
return vertices;
}
private void set( Vec2... verts )
{
// Find the right most point on the hull
Vec2[] vertices = Vec2.arrayOf( MAX_POLY_VERTEX_COUNT );
int rightMost = 0;
float highestXCoord = verts[0].x;
for (int i = 1; i < verts.length; ++i)
{
float x = verts[i].x;
if (x > highestXCoord)
{
highestXCoord = x;
rightMost = i;
}
// If matching x then take farthest negative y
else if (x == highestXCoord)
{
if (verts[i].y < verts[rightMost].y)
{
rightMost = i;
}
}
}
int[] hull = new int[MAX_POLY_VERTEX_COUNT];
int outCount = 0;
int indexHull = rightMost;
for (;;)
{
hull[outCount] = indexHull;
// Search for next index that wraps around the hull
// by computing cross products to find the most counter-clockwise
// vertex in the set, given the previos hull index
int nextHullIndex = 0;
for (int i = 1; i < verts.length; ++i)
{
// Skip if same coordinate as we need three unique
// points in the set to perform a cross product
if (nextHullIndex == indexHull)
{
nextHullIndex = i;
continue;
}
// Cross every set of three unique vertices
// Record each counter clockwise third vertex and add
// to the output hull
// See : http://www.oocities.org/pcgpe/math2d.html
Vec2 e1 = verts[nextHullIndex].sub( verts[hull[outCount]] );
Vec2 e2 = verts[i].sub( verts[hull[outCount]] );
float c = Vec2.cross( e1, e2 );
if (c < 0.0f)
{
nextHullIndex = i;
}
// Cross product is zero then e vectors are on same line
// therefore want to record vertex farthest along that line
if (c == 0.0f && e2.lengthSq() > e1.lengthSq())
{
nextHullIndex = i;
}
}
++outCount;
indexHull = nextHullIndex;
// Conclude algorithm upon wrap-around
if (nextHullIndex == rightMost)
{
vertexCount = outCount;
break;
}
}
// Copy vertices into shape's vertices
for (int i = 0; i < vertexCount; ++i)
{
vertices[i].set( verts[hull[i]] );
}
// Compute face normals
for (int i = 0; i < vertexCount; ++i)
{
Vec2 face = vertices[(i + 1) % vertexCount].sub( vertices[i] );
// Calculate normal with 2D cross product between vector and scalar
normals[i].set( face.y, -face.x );
normals[i].normalize();
}
((Vertex)this.dom).setVertices(vertices);
}
public Vec2 getSupport( Vec2 dir )
{
float bestProjection = -Float.MAX_VALUE;
Vec2 bestVertex = null;
for (int i = 0; i < vertexCount; ++i)
{
Vec2 v = ((Vertex)this.dom).getVertices()[i];
float projection = Vec2.dot( v, dir );
if (projection > bestProjection)
{
bestVertex = v;
bestProjection = projection;
}
}
return bestVertex;
}
/**
* Get the reference position of this {@link Polygon}.
* @return The reference position of this {@link Polygon}.
*/
public Vec2 getPosition() {
return position;
}
/**
* Set the reference position of this {@link Polygon}.
* @param position The reference position of this {@link Polygon}.
*/
public void setPosition(Vec2 position) {
this.position = position;
}
// public Vector getShiftedPolygon(){
//
// Vector vecs = new Vector();
//// System.out.println(position.x);
//// System.out.println(position.y);
// System.out.println("-----------------------------------------");
// for (int i = 0; i < vertexCount; i++){
// Vec2 v = new Vec2( ((Vertex)this.dom).getVertices()[i] );
// this.u.muli( v );
// v.addi( position );
// ((Vertex)this.dom).getVertices()[i] = v;
// vecs.add(v);
// System.out.println("--> " +v.x + " " + v.y);
// }
// System.out.println("-----------------------------------------");
// return vecs;
// }
public Vector getFullSpaceRepresentation(){
Vector vecs = new Vector();
// System.out.println(position.x);
// System.out.println(position.y);
// System.out.println("-----------------------------------------");
for (int i = 0; i < vertexCount; i++){
Vec2 v = new Vec2( ((Vertex)this.dom).getVertices()[i] );
this.u.muli( v );
v.addi( position );
// ((Vertex)this.dom).getVertices()[i] = v;
vecs.add(v);
// System.out.println("--> " +v.x + " " + v.y);
}
// System.out.println("-----------------------------------------");
return vecs;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy